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Americans want 

to age in place 
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Avg. cost of skilled nursing home 
care: ~$70,000/person/year. 
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By 2030, 20% of US population 
will be >65 years of age 
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Innovative health care technology can 

help sustain independent lifestyle. 
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“Prompting Systems” 



The Problem 
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Please turn off the burner. 

You just picked up the wrong vessel. 

It would be a good idea to take a walk. 

You look tired, why don’t you take a nap. 

Sugar is in the cupboard. 

Sam is trying to get in touch with you. 

Its John’s birthday, you wanna write a card? 

Please take a look at the Wattage of the light bulb. 

Its time to take medicine. 

Sugar is in the cupboard. 

Sam is trying to get in touch with you. 

Automatic delivery of verbal or non-verbal interventions 
that would help a smart home inhabitant in successful 
completion of daily tasks.  

Its time to take medicine. 



Our Solution 
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PUCK 

Prompting Users and 
Control Kiosk Under development at 

CASAS, WSU 

Automated Prompting 
System  

Based on Supervised 
Learning 



System Architecture 

9 Figure 1: System Architecture of PUCK  



Experimental Setup 
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• Testbed: 2 story apartment in WSU campus 
 

• Sensors: Motion, door, object, temperature, power 
 

• Participants: 128 older adults with mild cognitive disorder 
 

• Activities: Sweeping, Medication,  Writing birthday card, Watching 
DVD, Water plants, Phone call, Cooking, Selecting outfit  
 

• Activities are subdivided into steps.  
 

• Activities monitored via web cam. Experimenter remotely plays 
(in)direct audio/video cues when an error is detected. 
 

• Human annotators annotate datasets for activities and activity steps. 



Feature Generation 
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• Generate features considering each step of an activity as an instance 
in the training dataset.  

Feature # Feature Name Description 

1 stepLength Length of the step in time (seconds) 

2 numSensors Number of unique sensors involved with the step 

3 numEvents Number of sensor events associated with the step 

4 prevStep Previous step 

5 nextStep Next step 

6 timeActBegin Time (seconds) elapsed since the beginning of the activity 

7 timePrevStep Time (seconds) difference between the last event of the previous step 
and the first event of the current step 

8 stepsActBegin Number of steps visited since the beginning of the activity 

9 activityID Activity ID 

10 stepID Step ID 

11 M01 … M51 All of M01 to M51 are individual features denoting the frequency of firing 
of these sensors associated with the step 

12 Class Binary class. 1-”Prompt”, 0-”No-Prompt” 



Experimentation 
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• 3 fold cross validation with: 
 

• Decision Tree (J48) 
 
• Support Vector Machines (SMO) 
 
• Ensemble Boosting (LogitBoost) 



Performance of 
Baseline Classifiers 
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Figure 3: Accuracy Performance for Baseline Classifiers Figure 4: TP and TN Rates for Baseline Classifiers 



Failure of Baseline 
Classifiers 
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Problem: Highly imbalanced class distribution. 
 
Cause: Vast majority of training situations do not require prompts. 
 
Total # unique steps: 53 
# steps recognizable by annotators: 38 
# prompt instances: 149 (3.74% of total # of instances) 



Handling Imbalanced 
Class Distribution 
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• Sampling  
 

• Cost Sensitive Learning 



Handling Imbalanced 
Class Distribution 
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• Sampling  
 

• Cost Sensitive Learning 



Sampling 
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Solution: Boosting prompt situations in the training set without 
under/over representation. 
 
Technique:  Synthetic Minority Over-sampling Technique or SMOTE. 
 
Over-sampling 
i. Compute the difference between the feature vector (sample) 
under consideration and its nearest neighbor. 
ii. Multiply this difference by a random number between 0 and 1. 
iii. Add the product to the feature vector under consideration. 
 
Under-sampling 
Random under-sampling 
 



SMOTE-Variant 
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Why can’t we use SMOTE directly? 
 
• Minority class instances small in absolute number (149 in our case). 
• No nearest neighbor with same step of an activity in some cases. 
 
SMOTE-Variant: 
i. Randomly pick a minority class instance. 
ii. Consider activityID and stepID to find nearest neighbor. 
iii. Randomly choose any one nearest neighbor. 
iv. Synthesize new data point in the same way as SMOTE. 

 
 
 



Sampling 
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What is the ideal class distribution? 
Vary the percentage of minority class from 5-95% and test its 
performance using J48 Decision Tree. 
 

Figure 5: Effect of Class Distribution 



Handling Imbalanced 
Class Distribution 
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• Sampling  
 

• Cost Sensitive Learning 



Cost Sensitive Learning 
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• Assumption of classical machine learning techniques: 
“Different misclassification costs in the confusion matrix are equal.” 

 
• A CSL approach weighs the different categories of misclassification 
differently. 
 

• In our domain, misclassifying a “prompt” situation as “no-prompt” is 
much costlier than the reverse. 

 
 

Actual 

Negative  Positive 

Predicted Negative  True Negative or CTN False Negative or CFN 

Positive False Positive or CFP True Positive or CTP 



Cost Sensitive Learning 
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Determination of different misclassification costs: 
 
i. No cost for correct prediction, i.e. CTN and CTP are 0. 

 
ii. Number of false positives is low.  ∴ CFP = 1. 

 
iii. False negatives are critically important. We need to fine the near 

ideal CFN. 
 



Cost Sensitive Learning 
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Finding near ideal cost matrix empirically: Repeated experiments with 
different values of CFN . 

Figure 8: Effect of CFN distribution 
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Comparative Analysis 
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Figure 9: Comparison of TP Rate Figure 10: Comparison of AUC 



Conclusion 
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• Description of PUCK. 
 

• Proposed SMOTE-Variant. 
 

• Comparative analysis with CSL. 
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