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Avg. cost of skilled nursing home
care: ~$70,000/person/year.
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By 2030, 20% of US population
will be >65 years of age
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Innovative health care technology can
help sustain independent lifestyle.




“Prompting Systems”
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The Problem ow

Plazise turn off tne ourrner,

Sugaris in the cuoyoard.

Its tirne to talke rmedicine,

Samn is trying to get in touch with you. You looi tired, wny dor’t you take 2 nao.
Automatic delivery of verbal or non-verbal interventions
that would help a smart home inhabitant in successful
completion of daily taskS. Its Jonn’s b]rthclay, VOLu wWelririzl write 2 czre?

Please talke 2 look at tne Wattage of ine lignt oulo,
\ [ e e e e .. e ' ' ~ e
fou Just olcked uo tne wrong vessel,
|ts tirne to take rmeadicine,
Sarn s trying to get in toucn witn youl,

Sugar is in tne cuvooard,

[t would o2z good idea to take 2 wali. :
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Our Solution

Prompting Users and
Control Kiosk Under development at
CASAS, WSU

PUCK

Automated Prompting

System Based on Supervised

Learning
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System Architecture
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Figure 1: System Architecture of PUCK 9
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Experimental Setup

* Testbed: 2 story apartment in WSU campus
* Sensors: Motion, door, object, temperature, power
* Participants: 128 older adults with mild cognitive disorder

* Activities: Sweeping, Medication, Writing birthday card, Watching
DVD, Water plants, Phone call, Cooking, Selecting outfit

* Activities are subdivided into steps.

* Activities monitored via web cam. Experimenter remotely plays
(in)direct audio/video cues when an error is detected.

* Human annotators annotate datasets for activities and activity steps.
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Feature Generation
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stepLength
numSensors
numEvents
prevStep
nextStep
timeActBegin

timePrevStep

stepsActBegin
activitylD
steplD
MO1 ... M51

Class

Length of the step in time (seconds)

Number of unique sensors involved with the step

Number of sensor events associated with the step
Previous step

Next step

Time (seconds) elapsed since the beginning of the activity

Time (seconds) difference between the last event of the previous step
and the first event of the current step

Number of steps visited since the beginning of the activity
Activity ID
Step ID

All of MO1 to M51 are individual features denoting the frequency of firing
of these sensors associated with the step

Binary class. 1-"Prompt”, 0-"No-Prompt”
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Experimentation

* 3 fold cross validation with:
* Decision Tree (J48)
* Support Vector Machines (SMO)

* Ensemble Boosting (LogitBoost)
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Performance of
Baseline Classifiers
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Figure 3: Accuracy Performance for Baseline Classifiers Figure 4: TP and TN Rates for Baseline Classifiers
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Failure of Baseline
Classifiers

Problem: Highly imbalanced class distribution.

Cause: Vast majority of training situations do not require prompts.

Total # unique steps: 53
# steps recognizable by annotators: 38
# prompt instances: 149 (3.74% of total # of instances)

14



/ﬁ/\ WASHINGTON STATE
Wsu chsas @UNIVERSITY
A 4

Handling Imbalanced
Class Distribution

* Sampling

* Cost Sensitive Learning

15
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Class Distribution

* Sampling
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Solution: Boosting prompt situations in the training set without
under/over representation.

Technique: Synthetic Minority Over-sampling Technique or SMOTE.

Over-sampling

i. Compute the difference between the feature vector (sample)
under consideration and its nearest neighbor.

ii. Multiply this difference by a random number between 0 and 1.

iii. Add the product to the feature vector under consideration.

Under-sampling
Random under-sampling
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Why can’t we use SMOTE directly?

* Minority class instances small in absolute number (149 in our case).
* No nearest neighbor with same step of an activity in some cases.

SMOTE-Variant:

i. Randomly pick a minority class instance.

ii. Consider activitylD and steplD to find nearest neighbor.
iii. Randomly choose any one nearest neighbor.

iv. Synthesize new data point in the same way as SMOTE.

18
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Sampling

What is the ideal class distribution?
Vary the percentage of minority class from 5-95% and test its
performance using J48 Decision Tree.

1

0.8
0.7
0.6
05
04
03
0.2
01

0

09

——TN Rate TP Rate AUC
| e
Pl l N
F ol ! N\
T { N

7 :
F4 l
/ :

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Minority Class (in %)

Figure 5: Effect of Class Distribution
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Class Distribution

* Cost Sensitive Learning
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Cost Sensitive Learning

Actual
Negative Positive
Predicted Negative True Negative or Cqy False Negative or Cp,
Positive False Positive or Cpp True Positive or C;p

* Assumption of classical machine learning techniques:
“Different misclassification costs in the confusion matrix are equa

|”

* A CSL approach weighs the different categories of misclassification
differently.

* In our domain, misclassifying a “prompt” situation as “no-prompt” is
much costlier than the reverse.
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Cost Sensitive Learning

Determination of different misclassification costs:
i. No cost for correct prediction, i.e. C;, and C,are 0.
ii. Number of false positives is low. . C., = 1.

iii. False negatives are critically important. We need to fine the near
ideal Cg,.
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Cost Sensitive Learning
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Finding near ideal cost matrix empirically: Repeated experiments with
different values of C,, .
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Figure 8: Effect of C distribution
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Comparative Analysis
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Figure 9: Comparison of TP Rate Figure 10: Comparison of AUC
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Conclusion

* Description of PUCK.

* Proposed SMOTE-Variant.

* Comparative analysis with CSL.
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