
Handling Imbalanced and Overlapping Classes

in Smart Environments Prompting Dataset

Barnan Das
1
, Narayanan C. Krishnan

2
, Diane J. Cook

2

School of Electrical Engineering and Computer Science, Washington State University

Pullman WA 99164

1
barnandas@wsu.edu,

2
{ckn, cook}@eecs.wsu.edu

Abstract The area of supervised machine learning often encounters imbalanced

class distribution problem where one class is under represented as compared to

other classes. Additionally, in many real-life problem domains, data with an imba-

lanced class distribution contains ambiguous regions in the data space where the

prior probability of two or more classes are approximately equal. This problem,

known as overlapping classes, thus makes it difficult for the learners in classifica-

tion task. In this chapter, intersection between the problems of imbalanced class

and overlapping classes is explored from the perspective of Smart Environments

as the application domain. In smart environments, the task of delivering in-home

interventions to residents for timely reminders or brief instructions to ensure suc-

cessful completion of daily activities, is an ideal scenario for the problem. As a so-

lution to the aforementioned problem, a novel clustering-based under-sampling

(ClusBUS) technique is proposed. Density-based clustering technique, DBSCAN,

is used to identify “interesting” clusters in the instance space on which under-

sampling is performed on the basis of a threshold value for degree of minority

class dominance in the clusters. .

1 Introduction

Over the past two decades there has been tremendous development in the area of

knowledge discovery and data engineering. While developing supervised machine

learning techniques for several academic and industrial problem domains, re-

searchers encountered class imbalance problem that appears in real-world do-

mains such as text classification, detection of oil spills, and credit card fraud de-

tection. The data in these domains are imbalanced or skewed towards one class

and are thus under-represented. Thus far, a significant amount of literature has

been dedicated to describing techniques that deal with the class imbalance prob-

lem. These techniques include pre-processing data, modifying classifier parame-

2

ters to inherently suit the dataset, biasing the classifiers to make predictions in fa-

vor of the under-represented class, and grouping the dataset using clustering to

understand the subdivisions of the datasets [1].

In spite of making significant progress in this area, researchers are facing new

emerging class imbalance challenges that make the problem harder to solve with

existing techniques. Consider a network intrusion detection system. Network in-

truders these days have become smart enough to disguise their identity as legiti-

mate users. This is a binary class learning problem where data points may appear

as valid examples of both classes. The same situation can be present in problem

domains like credit card fraud detection, character recognition or automated

prompting in smart environments [2] where samples from different classes have

very similar characteristics. The minor differences present between the samples of

two different classes are usually difficult to capture in the feature vector proposed

by the domain expert. Therefore, there is a growing algorithmic need to deal with

this issue. In this chapter, automated prompting in smart environments has been

considered as the application domain for the evaluation of the proposed approach.

Although this chapter focuses on the automated prompting problem, our approach

is easily extensible for other problem domains which have datasets of a similar na-

ture.

Research in the area of smart environments has gained popularity over the last

decade. Most of the attention has been directed towards health monitoring and ac-

tivity recognition [3-6]. Recently, assistive health care systems have started mak-

ing an impact in society, especially in countries where human care-giving facilities

are expensive and a large population of adults prefers an independent lifestyle.

According to the studies conducted by the US Census Bureau [7], the number of

older adults in the US aged 65+ is expected to increase from approximately 35

million in 2000 to an estimated 71 million in 2030, and adults aged 80+ from 9.3

million in 2000 to 19.5 million in 2030. Moreover, there are currently 18 million

people worldwide who are diagnosed with dementia and this number is predicted

to reach 35 million by 2050 [8]. These older adults face problems completing both

simple (e.g. eating, dressing) and complex (e.g. cooking, taking medicine) Activi-

ties of Daily Living (ADLs) [9].

Real-world caregivers do not perform all activities for the care recipient, nor do

they prompt each step of a task. Instead, the caregiver recognizes when the care

recipient is experiencing difficulty within an activity and at that time provides a

prompt that helps in performing the activity completely. Therefore, an automated

computerized system that would be able to provide some of the facilities of a hu-

man caregiver is the call of the hour and would help in alleviating the burden of

many caregivers that are looking after a large section of the population.

A prompt in the context of a smart home environment and from a technical

perspective can be defined [10] as any form of verbal or non-verbal intervention

delivered to a user on the basis of time, context or acquired intelligence that helps

in successful (in terms of time and purpose) completion of a task. Although the li-

terature is flooded with similar terms such as reminders, alerts, and notifications,

prompt is generically used to represent interventions that ensure accomplishment

3

of certain activity goals. Prompts can provide a critical service in a smart home

setting, especially for older adults and inhabitants with cognitive impairment.

Prompts can remind individuals to initiate an activity or to complete incorrect or

missing steps of an activity. The PUCK project [11], or Prompting Users and Con-

trol Kiosk, conducted at the Center for Advanced Studies in Adaptive Systems

(CASAS) at Washington State University operates on the hypothesis that the tim-

ing of the prompt within an activity can be learned by identifying when an activity

step has been missed or performed erroneously. As a result, PUCK’s goal is to de-

liver an appropriate prompt when, and only when, one is required. The prompt

granularity for this system is individual activity steps, unlike other projects which

consider activities as a whole.

From a supervised learning perspective, the goal of the prompting system is to

classify an activity step (data point) either as a prompt step or a no-prompt step.

Thus, it is a binary classification problem. As, in a realistic setting, there are very

few situations that would require a prompt as opposed to situations that wouldn’t,

the number of training examples for prompt class is extremely low as compared to

no-prompt class. This makes the data inherently class imbalanced. Moreover, the

features that represent each activity step are insufficient to draw crisp boundaries

between these classes for some regions in the data space that is ambiguous. This

causes the occurrence of overlapping classes in addition to the inherent presence

of imbalance class distribution. It might be advocated that, if the features under

consideration are not being able to capture the necessary properties that can help

in proper distinction of examples from the two classes, why not propose new fea-

tures that can add more information instead of letting the problem occur and pro-

pose a solution? The best answer to this question is that the lack of infrastructural

requirements in a realistic setting restricts the addition of new features. More clari-

ty on this issue would be achieved when the smart environment testbed is de-

scribed in Section 4.

2 Problem Definition

The class imbalance problem occurs when a class in a dataset is under-represented

as compared to other classes. This essentially means that the imbalanced distribu-

tion of instances can exist for multiple classes. However, the general consensus in

the machine learning community is that most of the algorithms are designed for

imbalanced binary class distribution. Therefore, the paper mainly evaluates me-

thods for imbalanced binary class distribution.

Real-world imbalanced datasets usually consist of binary class instances where

the number of training examples of one class is extremely low as compared to the

other. The former class, which is under-represented is popularly termed as the mi-

nority class and the latter one as the majority class. Also, as in real life problem

domains, the primary interest is in the minority class, thus it is also known as posi-

tive class and the other as the negative class. Most of the conventional supervised

4

learning techniques try to optimize the accuracy or decrease the error rate on the

data and therefore consider the performance on the dataset as a whole and not the

two classes separately. For example, if a dataset consists of 1000 instances out of

which 50 are positive, a random guessing mechanism that predicts all the in-

stances as negative in the testing phase will give an accuracy of 95%. However, all

the positive class instances were predicted as negative. As can be understood from

the example, approaches with this kind of prediction can prove to be fatal in most

of the real-world problem domains. For example, in the mammography data set

where positive class represents cancerous and negative class as healthy, the

aforementioned biased prediction would result in the prediction of cancerous pa-

tients being healthy. Credit card fraud detection and network security threat detec-

tion are some of the other examples where this kind of prediction is not desirable.

Similarly, for the domain of automated prompting in smart environments, it is crit-

ically important to correctly classify prompt instances.

The class overlap problem [12] occurs when there are ambiguous regions in

the data space where there are approximately the same number of training ex-

amples from both classes. Conceptually, ambiguous regions can be visualized

as regions where the prior probability for both classes is approximately equal

and thus makes it difficult or impossible to distinguish between the two classes.

This is because it is difficult to make a principled choice of where to place the

class boundary in this region since it is expected that the accuracy will be equal

to the proportion of the volume assigned to each class. Figure 1 illustrates the

difference between normal data with crisp class boundaries and data with class

overlap.

Fig. 1. (left) Data without class overlap, (right) Data with class overlap

The combination of the aforementioned problems(imbalanced class and over-

lapping class) makes the resultant problem to be much more difficult than solving

them independently. It has been seen in some cases that identifying the overlap-

ping region in the data space and dealing with those instances can make the data

linearly separable. This idea is implemented in approaches like SMOTE+Tomek

[13], Tomek+CNN [14] and few others. But, in some cases an additional problem

of rare class instances exists which makes the class overlapping in imbalanced

5

class distribution more difficult. As mentioned in the previous section, in a smart

environment setting, class overlap occurs due to the fact that there are not suffi-

cient number of features that can differentiate between the prompt class and the

no-prompt class.
The prompting data has similar overlapping nature in between the two classes

and that is confirmed by performing a dimensionality reduction on the attributes.

Principal Component Analysis (PCA) [15] is considered for this purpose. The fea-

ture dimension is reduced to three and then plotted. Figure 2 shows a reduced

three dimension plot of the prompting data. It can be easily seen from the figure

that the positive (prompt) class instances are highly embedded in negative (no-

prompt) class instances.

Fig. 2. 3D PCA plot for prompting data

The class overlap problem in imbalanced class data can be subdivided into a

three-step sequential problem as shown in a schematic view in Figure 3. First it is

important to identify the regions of overlap in the data space. However, there are

major obstacles in studying overlap. Once the overlapping regions are successfully

identified, the training examples in this region should be handled with a separat-

ing, merging or discarding scheme [16]. The next step is to perform the learning

using different machine learning algorithms. Therefore, the approach taken in this

paper is a preprocessing technique as it performs under-sampling that helps in

achieving better learning models. Each of these steps are discussed in more detail

in Section 6.

Fig. 3. Steps taken to address class overlap

6

3 Related Work

3.1 Imbalanced Class Distribution

Due to its common occurrence in real-life problem domains, the class imbalance

problem has been studied extensively over the past decade. Numerous approaches

have been proposed to deal with this issue.

One of the most common categories of approaches is a preprocessing technique

known as Sampling that modifies the dataset by some means in order to provide a

balanced class distribution. However, determining the ideal class distribution [17]

is still an unanswered question and in most cases is done empirically. One of the

naïve methods is to oversample the minority class by duplicating some of the

available samples and/or under-sampling the majority class samples by throwing

away randomly-chosen samples. However, these methods have the problem of ei-

ther overfitting due to replication of data or losing potentially useful information,

respectively. These drawbacks can be overcome by choosing a synthetic data ge-

nerator like SMOTE [18] for oversampling instead of replicating data points, and

informed under-sampling techniques like EasyEnsemble or BalancedCascade [19]

which use strategic methods to carefully remove majority class instances. Again,

synthetic data generation methods like SMOTE gives birth to the problem of over

generalization due to the way it generates new data sample causing class overlaps.

This could be overcome by an improved version of SMOTE known as Borderline-

SMOTE [20], which generates synthetic minority class instances closer to the de-

cision boundary. In addition to this, there are data cleansing techniques that can

clean up unwanted overlapping between classes by removing pairs of minimally

distanced nearest neighbors of opposite classes, popularly known as Tomek links

[14]. SMOTE+ENN and SMOTE+Tomek [13] are two of the methods that utilize

the capability of Tomek links to clean the data. However, the cleansing techniques

might not be desirable for datasets which have inherent class overlaps or absolute

rare class. Data cleansing would cause loss of highly informative data in these

special cases.

Sampling techniques are data-level methods and can sometimes get complex

and computationally expensive. Therefore, algorithm-level methods that can inhe-

rently take care of the imbalance are proposed. Cost sensitive learning methods

(CSLs) take advantage of the underlying assumption of classical learning methods

which consider the cost of all misclassification errors to be equal. Instead, CSLs

use different cost factors that describe the costs for misclassifying any particular

data example. The effectiveness of the application of theoretical foundations and

algorithms of CSL methods to imbalanced learning problems can be verified by

the works of Elkan [21] and Maloof [22]. Moreover, empirical studies have shown

that in certain specific imbalanced learning domains [23,24], CSLs have per-

7

formed better than sampling methods. The concepts of CSL have been coupled

with existing learning methods to boost their performance. Cost Sensitive Datas-

pace Weighting with Adaptive Boosting [25] takes the advantage of iterative up-

dating of weight distribution function of AdaBoost by introducing cost items in

the weight updating strategy. Cost sensitive decision trees [26] use a cost-sensitive

fitting approach to make adjustments that can be applied to decision threshold,

split criteria at each node or pruning schemes. CSLs have also been used with

neural networks [27] to combine the cost factor with the probabilistic estimate of

the output values and the learning rate.

3.2 Overlapping Classes

While there has not been significant work in dealing with the class overlap prob-

lem in combination with an imbalanced class distribution, the problem of overlap-

ping classes or ambiguous data has been widely studied in isolation [28-31], par-

ticularly in the areas of character recognition and document analysis [32], text

classification, automated image annotation, credit card fraud detection, and drug

design [33].

There have been several systematic and extensive investigations to study the

nature of classifiers when they are faced with the class overlap problem in ad-

dition to an imbalanced class problem. Prati et al. [34] give a vivid illustration

of the cause of imbalanced class distribution posing a problem in the presence

of high degree of class overlap. They show that overlap aggravates the problem

of imbalance and is sufficient to degrade the performance of the classifier on its

own. The same authors report the performance of different balancing strategies

on artificial datasets in [35]. Garcia et al. [36] analyze the combined effects of

class imbalance and class overlap on instance-based classification. This work is

extended [37] by using several performance measures to see which one of them

captures the degraded performance more accurately.

As mentioned before, a major hindrance to deal with overlapping class data

is the identification of ambiguous or overlapping regions. However, this issue

has been addressed to some extent by the approaches that deal with class over-

lap problem in isolation. Tang et al. [30] proposed a k-Nearest Neighbor based

approach to identify ambiguous regions in the data space. Trappenberg et al.

[28] took a very similar approach to identify ambiguous regions. Visa et al. [38]

perform a fuzzy set representation of the concept and thus incorporate overlap

information in their fuzzy classifiers. In addition to this, Xiong et al. [16] use

the one-class classification algorithm Support Vector Data Description (SVDD)

to capture the overlapping regions in real-life datasets which have imbalanced

class distribution too.

Once the overlapping region of the data space has been identified, the ob-

vious next step is to handle the training examples that belong to this region.

Xiong et al. [16] propose that the data with the presence of class overlapping

8

can be modeled with three different schemes: discarding, merging and separat-

ing. The discarding scheme ignores that data in the overlapping region and just

learns on the rest of the data that belongs to the non-overlapping region.

SMOTE + Tomek Links [39] is such a discarding technique used to improve

the performance of a classification performance of protein annotations in bioin-

formatics. While the discarding scheme works satisfactorily for datasets that

have ample number of training examples from both classes, it would perform

drastically when applied to datasets which have absolute rarity in data.

The merging scheme merges the data in the overlapping region as a new

class. A two-tier classification model is built on the data. The upper tier clas-

sifier focuses on the whole data with an additional class which represents the

overlapping region. The lower tier classifier on the other hand focuses on the

data that belongs to the overlapping region. Trappenberg et al. [28] proposes a

scheme that refers to the overlapping region class as IDK (I don’t know) and do

not attempt to predict the original class of this data. The authors argue that, a l-

though this scheme loses some prediction of data, a drastic increase of confi-

dence can be gained on the classification of the remaining data. Hashemi et al.

[29] take a very similar approach to address the issue.

In the separating scheme, the data from overlapping and non-overlapping

regions are treated separately to build the learning models. Tang et al. [30] pro-

poses a multi-model classifier named Dual Rough Support Vector Machine

(DR-SVM) which combines SVM and kNN under rough set technique. kNN is

used to extract boundary patterns or overlapping regions. Two different SVMs

are then trained for the overlapping and non-overlapping regions. But, the clas-

sification result will show whether a pattern lies in overlapping region. Al-

though, the classification of a test example as belonging to overlapping and

non-overlapping region depends on the goal of the application problem, this

methodology would involve an additional domain expert knowledge to deter-

mine the class of the test example. Thus, this scheme is not suitable for applica-

tions where it is a requirement of the system to determine the class of the test

example and has no room for additional domain expert intervention.

All of the aforementioned schemes either consider the overlapping data as

noise or just avoid making a decision on their original classes so that the confi-

dence of prediction on the remaining data could be increased. This approach of

partially “avoiding the problem” rather than proposing a solution is not appro-

priate for many real-life problem domains where it is absolutely necessary for

the system to take a decision with certainty (often due to a time critical nature)

rather than waiting for the domain expert intervention. For example, in the

problem domain of intrusion detection, attackers can disguise themselves as le-

gitimate users. Due to high traffic of this kind of attackers, it is necessary to

take a time critical decision on the authenticity of the user.

Therefore, in this chapter we take a preprocessing approach similar to the

discarding scheme to deal with the overlapping data points. Instead of designat-

ing the boundary points as noises, our approach considers them as crucial for

decision making in the overlapping region. The minority class points in the

9

overlapping region are retained and the majority class points are discarded to

make a clear distinction between the minority class points in the overlapping

region and the rest of the dataset.

4 Data Collection

The CASAS smart home infrastructure is used to replicate near ideal day to day

lives of individuals in their homes. The facility is used for a wide spectrum of dif-

ferent goals which have both computer science and psychology focus. These goals

include, activity recognition, activity discovery, activity prediction, functional as-

sessment of participants based on demographic information, user study of machine

learning driven solutions to some of the problems, testing a wide variety of sensor

platforms, and at last but not the least, the automated prompting task (the PUCK

project) that needs a real-life validation of the effectiveness of machine learning

approaches from a technological perspective and effectiveness of prompts from

psychological perspective. Although, the data that is used for automated prompt-

ing task is collected under a controlled environment, the best effort has been on

maintaining a realistic daily life setting.

The test bed, or smart apartment, is located in an on-campus town house apart-

ment. Undergraduate students, healthy older adults, and older adults with various

levels of dementia are brought in to perform Activities of Daily Living, or ADLs.

The data collected from these experiments are used to train classifiers in identify-

ing these ADLs.

Fig. 4. PUCK system architecture

10

The current sensor system is composed of several different sensor types. There

are sensors for motion, ambient light level, temperature, doors, light switches,

items, objects, water flow, and power use. A majority of our sensors are now

wireless, utilizing a Control4 ZigBee wireless mesh network.

There are two types of motion detectors, ceiling mounted and wall mounted.

The ceiling mounted motion detectors sense directly below them and have their

viewing aperture confined so that they can only sense approximately a four feet

diameter area below them. The wall mounted motion detectors are mounted so

that they can look out into an area, such as an entire room, and detect any motion

within that space. Integrated into the motion detector enclosure are ambient light

level sensors. This can be useful for allowing the home to automatically turn on

lights where you are to help prevent tripping at night, or illuminating your work-

space when enough natural light is no longer available. Temperature sensors are

also useful for determining inhabitant behavior, such as thermal preferences, de-

termining when the stove or oven is in use in the kitchen.

One of the bedrooms on the second floor is used as a control room where the

experimenters monitor the activities performed by the participants (via web cam-

eras) and deliver pre-defined prompts through an audio delivery system whenever

necessary. The goal of PUCK is to learn from this collected data how to time the

delivery of prompts and ultimately to automate the role of the experimenter in this

setting. The following activities are used in our experiments: Sweep, Refill Medica-

tion, Birthday Card, Watch DVD, Water Plants, Make Phone Call, Cook and Select

Outfit. These activities are subdivided into relevant steps by the psychologists in

order to track their proper completion.

Volunteering participants are brought in the apartment and asked to perform the

specific activities. While going through the steps of an activity, a prompt is given

if he/she performs steps for other activities rather than the current one, if a step is

skipped, if extra/erroneous steps are performed, if an inappropriate tool is used, or

if too much time has elapsed since the beginning of the activity. Note that there is

no ideal order of steps by which the activity can be completed. Therefore, a

prompt is issued only when one of the conditions mentioned above occurs. More-

over, the goal is to deliver as few prompts as possible. The experimenters keep

track of all the errors committed by the participants and the steps at which a

prompt was issued, which are later extracted and used to train the machine learn-

ing algorithms.

The in-house sensor network captures all sensor events and stores them in a

SQL database in real time. The sensor data gathered for our SQL database is ex-

pressed by several features, summarized in Table 1. These four fields (Date, Time,

Sensor, ID and Message) are generated by the data collection system.

After collecting data, sensor events are labeled with the specific activity and

step within the activity, {activity#.step#}, that was being performed while the sen-

sor events were generated, as shown in Figure 5.

11

Table 1. Sample of sensor events used for our study

Date Time Sensor ID Message

2009-02-06 17:17:36 M45 ON

2009-02-06 17:17:40 M45 OFF

2009-02-06 11:13:26 T004 21.5

2009-02-05 11:18:37 P001 747W

2009-02-09 21:15:28 P001 1.929kWh

Fig. 5. Annotation of activity steps. The sensor events belong to steps 3, 4, 8, and 9 of activi-

ty 7.

5 Dataset and Performance Metrics

5.1 Feature Generation

Relevant features are generated from the annotated data that is helpful in predict-

ing whether a step is a prompt step or a no-prompt step. Each step of an activity is

treated as a separate training example, and pertinent features are defined to de-

scribe the step based on sensor data. Each data instance is tagged with the class

value. Specifically, a step at which a participant received a prompt is labeled as

"1" indicating prompt, others are hence assumed to be no-prompt steps and la-

beled as "0". Table 2 provides a summary of all generated features. It should be

noted that the machine learning models learn and predict class labels from this re-

fined dataset. This way PUCK predicts if an instance (steps of activities in this

context) constitutes a prompt instance. Thus, the problem of when a prompt

should be delivered is addressed.

2009-05-11 14:59:54.934979 D010 CLOSE 7.3

2009-05-11 14:59:55.213769 M017 ON 7.4

2009-05-11 15:00:02.062455 M017 OFF

2009-05-11 15:00:17.348279 M017 ON 7.8

2009-05-11 15:00:34.006763 M018 ON 7.8

2009-05-11 15:00:35.487639 M051 ON 7.8

2009-05-11 15:00:43.028589 M016 ON 7.8

2009-05-11 15:00:43.091891 M015 ON 7.9

2009-05-11 15:00:45.008148 M014 ON 7.9

12

Table 2. Generated features.

Feature Description

stepLength Length of step in time (seconds)

numSensors Number of unique sensors involves with the step

numEvents Number of sensor events associated with the step

prevStep Previous step ID

nextStep Next step ID

timeActBegin Time (seconds) elapsed since the beginning of the activity

timePrevAct Time (seconds) difference between the last event of the previous step and

first event of the current step

stepsActBegin Number of steps visited since the beginning of the activity

activityID Activity ID

stepID Current step ID

location A combination of features like, kitchen, kitchen sink, dining room, living

room, hallway, etc. which represents motion sensor firing of those regions

Class Binary class representing prompt and no-prompt

Sensor data collected from 128 participants is used to train the machine learn-

ing models. There are 53 steps in total for all the activities, out of which 38 are re-

cognizable by the annotators. The rest of the steps are associated with specific ob-

ject interactions that could not be tracked by the current sensor infrastructure. The

participants were delivered prompts in 149 cases which involved any of the 38 re-

cognizable steps. Therefore, approximately 3.74% of the total instances are posi-

tive (prompt steps) and the rest are negative (no-prompt steps). Essentially, this

means that, predicting all the instances as negative, would give more than 96% ac-

curacy even though all the predictions for positive instances were incorrect. This

requires evaluation of the classifiers with performance metrics that can capture

classification performance for both the classes. Section 5.2 highlights the perfor-

mance metrics used for this study.

5.2 Performance Measures

Conventional performance measures such as accuracy and error rate consider dif-

ferent types of classification errors as equally important. For example, the purpose

of this work is not to predict whether a prompt should not be delivered in a step,

but to predict when to issue the prompt. An important thing to keep in mind about

this domain of automated prompting is that false positives are more acceptable

than false negatives. While a prompt that is delivered when it is not needed is a

nuisance, that type of mistake is less costly than not delivering a prompt when one

is needed, particularly for a resident with dementia. In addition, considering that

the purpose of the research is to assist people by delivering a lesser number of

13

prompts, there should be a trade-off between the correctness of predicting a

prompt step and the total accuracy of the entire system.

Therefore, performance measures that directly measure the classification per-

formance for positive and negative classes independently are considered. The True

Positive (TP) Rate (the positive which is also in this case the minority class) here

represents the percentage of activity steps that are correctly classified as requiring

a prompt; the True Negative (TN) Rate here represents the percentage of steps that

are accurately labeled as not requiring a prompt. The TP and TN Rates are thus

capable of measuring the performance of the classifiers separately for the positive

and negative classes. ROC curve analysis is used to evaluate overall classifier per-

formance. An ROC curve plots the classifier’s false positive rate [17] on the x-axis

and the true positive rate on the y-axis. A ROC curve is generated by plotting the

accuracy obtained by varying different parameters of the classifiers. The primary

advantage of using these is that they illustrate the classifier’s performance without

taking into account class distribution or error cost. AUC, or the area under ROC

curve [40], is reported in order to compute the performance over all costs and dis-

tributions. Also, the geometric mean of TP and TN rates denoted by G-mean is re-

ported, which is commonly used as a performance metric in imbalanced class

learning. G-mean is calculated as TPRate TNRate .

6 Current Approach

By performing a hypothesis testing, Denil et al. proved [41] that overlap and im-

balance are not two independent factors. They have very strong coupling when it

comes to the problem of imbalanced class distribution. Denil et al. showed that if

overlap and imbalance levels are too high, good performance cannot be achieved

regardless of amount of available training data. Therefore, employing a Cluster-

Based Under-Sampling (ClusBUS) technique, the purpose is to get rid of the over-

lapping class problem and the hypothesis is that achieving success with the over-

lap problem would also be helpful in getting rid of the detrimental effects of class

imbalance problem to some extent, as the majority class is being under-sampled.

The idea of devising this technique is derived from the use of Tomek links

[14] combined with other sampling methods like Condensed Nearest Neighbor

[42] and SMOTE [13]. Tomek links are defined as: given two examples Ei and

Ej belonging to different classes, and d(Ei,Ej) being the distance between Ei and

Ej, a (Ei,Ej) pair is called a Tomek link if there is not an example Ek such that

d(Ei,Ek) < d(Ei,Ej). If two examples form a Tomek link, then either one of these

examples is noise or both examples are on or near the class boundary. Tomek

links are used both as a data cleansing method and an under-sampling method.

As a data cleansing method, examples of both classes are removed, and as an

under-sampling method, only examples belonging to the majority class are

eliminated.

14

One-sided selection (OSS) [43] is an under-sampling method that applies

Tomek links followed by the application of Condensed Nearest Neighbor

(CNN). In this method, Tomek links are used to remove noisy and borderline

majority class examples. As a small amount of noise can make the borderline

examples fall on the wrong side of the decision boundary, borderline examples

are considered as unsafe. CNN is used to remove examples from the majority

class that are far away from the decision boundary. The rest of the majority and

minority class examples are used for learning.

As opposed to the use of Tomek links in OSS to find minimally distanced

nearest neighbor pairs of opposite classes and then remove majority class ex-

amples, ClusBUS finds interesting clusters with a good mix of minority and

majority class examples. The definition of good mix is determined by a degree

of minority class dominance explained in detail later in this section. The major-

ity class examples from these clusters are then removed.

Table 3 summarizes the ClusBUS algorithm. First, the entire training data is

clustered ignoring the class attribute using Euclidean distance as the distance

measure. The degree of minority class dominance, denoted by r, for each of

these clusters is calculated as the ratio of number of minority class examples to

the size of the cluster. Therefore, r=0 indicates that all the examples of the

cluster belong to the majority class, and r=1 indicate that all the examples be-

long to the minority class. The clusters whose r lies between 0 and 1 are of in-

terest in this method as it indicates that the cluster has both minority and major-

ity class examples. For this kind of cluster, the majority class examples are

removed if r is equal to or greater that an empirically determined threshold val-

ue τ. Clearly, if the threshold τ is low more majority class examples would be

removed as compared to when τ is high. This method creates a “vacuum”

around the minority class examples in each cluster and thus helps the machine

learning classifiers learn the decision boundary more efficiently.

Table 3. Algorithm of Cluster-Based Under-Sampling.

1. Let S be the original training set.

2. Use clustering to form clusters on S denoted by Ci where 1<i<|C|.

3. Find the degree of minority class dominance for all Ci by:

Number of Minority Class examples in Ciri

Ci



4. For clusters which satisfy: 0<ri<1 and r>=τ (where, τ = f(r) is an empirically de-

termined threshold value for r and is uniform over all the clusters), remove all the

majority class examples and retain all the minority class example.

Figure 6 shows an illustration of ClusBUS on a synthetic dataset. The imba-

lanced and overlapping data is represented in figure at top-left. Identification of

overlapping regions in the data space is performed using clustering as shown in

the top-right diagram. The majority class points are removed from the clusters for

15

which r > τ. Note that, in the bottom diagram of Figure 6, the majority class

points have been removed from all the clusters in order to make the visual re-

presentation of the step explanatory. In the actual algorithm, removal of major i-

ty class points is done only on the basis of r > τ.

Fig. 6. Schematic representation of ClusBUS Algorithm

The clustering approach in order to identify interesting clusters can be any

conventional clustering approach. In this experiment, partitioning based clus-

tering methods are avoided due to two reasons: (1) requires user intervention in

specifying the number of clusters that need to be constructed from the data, and

(2) forms spherical-shaped clusters only. In this study, a density based cluster-

ing methods, namely, Density-Based Spatial Clustering of Applications with

Noise or DBSCAN is used. The rationale behind using DBSCAN is that there

can be arbitrary shapes of clusters in the data that are not necessarily spher ical

(Gaussian). As there is no prior knowledge of the distribution of the data, the

notion of density, on which DBSCAN is based, is more meaningful rather than

specifying the number of clusters and forcing the data to be partitioned accor-

dingly.

DBSCAN [44,45] is a density based clustering technique that treats clusters

as dense regions of objects in the data space that are separated by regions of

low density, mostly representing noise. Any object that is not contained in any

16

cluster is considered as noise. In other words, DBSCAN defines a cluster as a

maximal set of density-connected points. The neighborhood of an object or data

point is defined by a parameter ε. If the ε-neighborhood of a data point contains

at least a minimum number of other points denoted by MinPts, then the point is

called a core point, and the ε-neighboring points are directly density-reachable

from the core point. A point p is density-reachable from point q with respect to

ε and MinPts, if there is a chain of objects p1,…, pn, where p1=q and pn=p such

that pi+1 is directly density-reachable from pi with respect to ε and MinPts. In a

similar way, a point p is density-connected to q if there is a point o in the same

data space such that both p and q are density-reachable from o with respect to ε

and MinPts. The DBSCAN algorithm is summarized in Table 4.

Table 4. Algorithm of DBSCAN

1. Search for clusters by checking ε-neighborhood of each point.

2. If ε-neighborhood of a point p contains more than MinPts, a new cluster with p as

core point is created.

3. Iterative collection of directly density-reachable points from the core points.

4. Terminate when no new point can be added to any cluster.

The threshold τ, on the basis of which the majority class points are under -

sampled from interesting clusters, is empirically determined by considering sta-

tistical properties of the degree of minority class dominance r. Table 5 de-

scribes the algorithm to calculate τ.

Table 5. Algorithm to find τ

1. Consider all r such that 0<r<1.

2. Find min and max r.

3. On the basis of an empirical test, select a value of r in between min and median

as τ.

It should also be kept in mind that the prompting data has an absolute rarity

imbalance problem, that is, the minority class instances are not only relatively

less as compared to majority class, but also rare in absolute number. Therefore,

this serves as a rationale for not employing sampling methods that involve dis-

carding minority class examples.

17

7 Experimentation and Results

For our experiments, learning algorithms are chosen from four widely accepted

categories of learners, namely, decision trees, k nearest neighbors, Bayesian learn-

er and support vector machines. The specific classifiers chosen from these areas

are: C4.5 [46], IBk [47], Naïve Bayes Classifier [48] and SMO [49], respectively.

Observing the results of the classifiers from four different categories gives the

readers the opportunity to analyze the improvement that ClusBUS achieves.

In the domain of imbalanced class datasets, most of experiments are performed

by k-fold cross validation. This method of testing is far away from reality for most

real-life problems, especially methods which involve preprocessing techniques

such as sampling. Most of the times sampling tampers with the original data dis-

tribution, and cross validation forces the classifiers to train as well as test on the

same tampered data distribution and thus resulting in overly optimistic results

which are tangential to reality. In order to avoid this inappropriate evaluation

technique, the current experimental setup trains the classifiers on 80% data and

considers the rest for testing. Also, the degree of imbalance in the original dataset

is maintained in training and testing examples.

As the proposed approach is a preprocessing technique, under-sampling to be

more specific, that is performed on the data before it could be fed to the classifi-

ers, the comparison is done with a well known over-sampling technique, known as

SMOTE [18]. SMOTE uses a combination of both under and over sampling, but

without data replication. Over-sampling is performed by taking each minority

class sample and synthesizing a new sample by randomly choosing any or all (de-

pending upon the desired size of the class) of its k minority class nearest neigh-

bors. Generation of the synthetic sample is accomplished by first computing the

difference between the feature vector (sample) under consideration and its nearest

neighbor. Next, this difference is multiplied by a random number between 0 and

1. Finally, the product is added to the feature vector under consideration. As men-

tioned earlier, there are a number of downsides if the methods are evaluated with a

cross validation technique. In case of SMOTE, as the training and testing were

done on the same examples that are synthetically generated, the overfitting of the

classifiers caused by an overwhelmed synthesis of artificial minority class exam-

ples, would never be detected. For the current experimentation, SMOTE is used to

boost the number of training examples of minority class to be the same as that of

majority class examples. Any further boosting to generate more artificial training

examples would make is unrealistic in real-life problem domains due to high com-

putation and sometimes monetary cost associated with synthesizing new data

points.

As mentioned in the algorithm of ClusBUS, the threshold value of the degree

of minority class dominance, on the basis of which interesting clusters are identi-

fied and the majority class examples are removed, is determined empirically. As

mentioned in Table 5, τ is calculated by finding a value between min and median.

This is done by varying the value of τ from median, 1
st
 tercile, 1

st
 quartile, 1

st

18

quintile, and so on, till 1
st
 decile. In other words, the first x% of interesting clusters

(where interesting clusters are increasingly ordered based on the r) is considered

for under-sampling, where x is 50%, 33%, 25%, 20%, 16.67%, 14.28%, 12.5%

11.11% and 10%. TP Rate, FP Rate and AUC of C4.5 on the data after being pre-

processed using ClusBUS are plotted in Figure 7. In the x axis, a number k indi-

cates the first part of the data if it is divided into k equal parts.

Fig. 7. Comparison of performance measures: (left) TP and FP Rate, (right) AUC, with re-

spect to different values of k.

Fig. 8. Comparison of performance measures: (top-left) TP Rate, (top-right) FP Rate, (bot-

tom-left) AUC, and (bottom-right) G-means

19

It can be seen that FP rate from k=3 to k=4. Also, AUC is fairly high at k=4.

Therefore, further experimentation with the rest of the classification algorithms is

performed considering k=4, that is τ=0.25.

From Figure 8, it can be clearly stated that ClusBUS performs significantly bet-

ter than SMOTE. ClusBUS does not entail any costly data synthesis technique like

SMOTE, but performs under-sampling on majority class training examples that

belong to the overlapping region in the data space. TP Rate and G-means has

shown significant improvement over SMOTE, although the same trend is not fol-

lowed for AUC. For C4.5 and Naïve Bayes classifiers AUC is marginally better

than that achieved by SMOTE. However, ClusBUS has caused increase in FP Rate

as compared to the performance of the classifiers on original data and after apply-

ing SMOTE. But, this increase is not significant enough to demean the advantages

and improvement of ClusBUS on other performance metrics

8 Conclusions and Future Work

This chapter proposes a novel preprocessing technique, ClusBUS, to deal with the

class overlap problem in the presence of imbalanced class distribution in the data-

set. A density-based clustering technique is used to find interesting clusters that

would be chosen for under-sampling. This problem occurs in many real-life prob-

lem domains like automated prompting task in smart environments, credit card

fraud detection, network intrusion detection, etc. The effectiveness of the ap-

proach is validated by selecting smart environments as the target domain. The data

of automated prompting task is therefore considered for experimentation. Experi-

ments show that it is possible to achieve significant improvement over other well-

known sampling techniques like SMOTE.

The plan for the future is to test the performance of ClusBUS on data from oth-

er real-life problem domains such as credit card fraud detection and network intru-

sion detection. Also, a comparative analysis would be performed with a wider

spectrum of sampling techniques.

References

1. He H, Garcia EA (2008) Learning from imbalanced data. IEEE Transactions on Knowledge

and Data Engineering:1263-1284

2. Das B, Chen C, Dasgupta N, Cook DJ, Seelye AM (2010) Automated prompting in a smart

home environment. Paper presented at the 2010 IEEE International Conference on Data

Mining Workshops,

3. Singla G, Cook DJ, Schmitter-Edgecombe M (2010) Recognizing independent and joint

activities among multiple residents in smart environments. Journal of ambient intelligence

and humanized computing 1 (1):57-63

20

4. Singla G, Cook DJ, Schmitter-Edgecombe M (2009) Tracking activities in complex settings

using smart environment technologies. International journal of biosciences, psychiatry, and

technology (IJBSPT) 1 (1):25

5. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and

ubiquitous sensors. Pervasive Computing:158-175

6. Maurer U, Smailagic A, Siewiorek DP, Deisher M Activity recognition and monitoring using

multiple sensors on different body positions. In, 2006. IEEE, pp 4 pp.-116

7. Bureau UC (2011) US Population Projections.

http://www.census.gov/population/www/projections/natdet-D1A.html. 2011

8. Bates J, Boote J, Beverley C (2004) Psychosocial interventions for people with a milder

dementing illness: a systematic review. Journal of Advanced Nursing 45 (6):644-658

9. Wadley VG, Okonkwo O, Crowe M, Ross-Meadows LA (2008) Mild Cognitive Impairment

and everyday function: Evidence of reduced speed in performing instrumental activities of

daily living. American Journal of Geriatric Psych 16 (5):416

10. Das B, Chen C, Seelye AM, Cook DJ (2011) An Automated Prompting System for Smart

Environments. Paper presented at the 9th International Conference on Smart Homes and

Health Telematics,

11. Das B, Cook D, Schmitter-Edgecombe M, Seelye AM (2012) PUCK: An Automated

Prompting System for Smart Environments. Personal and Ubiquitous Computing Theme

Issue on Sensor-driven Computing and Applications for Ambient Intelligence (779)

12. Denil M (2010) The Effects of Overlap and Imbalance on SVM Classification. Master's,

Dalhousie University,

13. Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for

balancing machine learning training data. ACM SIGKDD Explorations Newsletter 6 (1):20-

29

14. Tomek I (1976) Two modifications of CNN. IEEE Trans Syst Man Cybern 6:769-772

15. Jolliffe I (2002) Principal component analysis. Encyclopedia of Statistics in Behavioral

Science

16. Xiong H, Wu J, Liu L Classification with Class Overlapping: A Systematic Study.

17. Provost F, Fawcett T, Kohavi R The case against accuracy estimation for comparing

induction algorithms. In, 1998. Citeseer,

18. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority

over-sampling technique. Journal of Artificial Intelligence Research 16 (1):321-357

19. Liu XY, Wu J, Zhou ZH (2006) Exploratory under-sampling for class-imbalance learning.

20. Han H, Wang WY, Mao BH (2005) Borderline-SMOTE: A new over-sampling method in

imbalanced data sets learning. Advances in Intelligent Computing:878-887

21. Elkan C The foundations of cost-sensitive learning. In, 2001. Citeseer, pp 973-978

22. Maloof M Learning when data sets are imbalanced and when costs are unequal and unknown.

In, 2003. Citeseer,

23. McCarthy K, Zabar B, Weiss G Does cost-sensitive learning beat sampling for classifying

rare classes? In, 2005. ACM, pp 69-77

24. Liu XY, Zhou ZH (2006) The influence of class imbalance on cost-sensitive learning: An

empirical study.

25. Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of

imbalanced data. Pattern Recognition 40 (12):3358-3378

26. Drummond C, Holte RC Exploiting the cost (in) sensitivity of decision tree splitting criteria.

In, 2000. pp 239-246

27. Kukar M, Kononenko I Cost-sensitive learning with neural networks. In, 1998. Citeseer, pp

445-449

28. Trappenberg TP, Back AD A classification scheme for applications with ambiguous data. In,

2000. IEEE, pp 296-301 vol. 296

29. Hashemi S, Trappenberg T (2002) Using SVM for Classification in Datasets with

Ambiguous data. SCI 2002

http://www.census.gov/population/www/projections/natdet-D1A.html

21

30. Tang Y, Gao J (2007) Improved classification for problem involving overlapping patterns.

IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E SERIES D 90 (11):1787

31. Lin YM, Wang X, Ng WWY, Chang Q, Yeung DS, Wang XL Sphere classification for

ambiguous data. In, 2006. IEEE, pp 2571-2574

32. Liu CL (2008) Partial discriminative training for classification of overlapping classes in

document analysis. International journal on document analysis and recognition 11 (2):53-65

33. Andrews SJD, Hofmann T, Van Hentenryck P, Black M (2007) Learning from ambiguous

examples, vol 68. vol 07.

34. Prati RC, Batista GE, Monard MC (2004) Class imbalances versus class overlapping: an

analysis of a learning system behavior. MICAI 2004: Advances in Artificial Intelligence:312-

321

35. Batista GE, Prati RC, Monard MC (2005) Balancing strategies and class overlapping.

Advances in Intelligent Data Analysis VI:24-35

36. García V, Alejo R, Sánchez J, Sotoca J, Mollineda R (2006) Combined effects of class

imbalance and class overlap on instance-based classification. Intelligent Data Engineering

and Automated Learning–IDEAL 2006:371-378

37. García V, Mollineda R, Sánchez J, Alejo R, Sotoca J (2007) When overlapping unexpectedly

alters the class imbalance effects. Pattern Recognition and Image Analysis:499-506

38. Visa S, Ralescu A Learning imbalanced and overlapping classes using fuzzy sets. In.

39. Batista G, Bazan A, Monard MC Balancing training data for automated annotation of

keywords: a case study. In, 2003. Citeseer, pp 35–43

40. Hand DJ (1997) Construction and assessment of classification rules, vol 15. Wiley New

York,

41. Denil M, Trappenberg T (2010) Overlap versus Imbalance. Advances in Artificial

Intelligence:220-231

42. Hart P (1968) The condensed nearest neighbor rule (corresp.). Information Theory, IEEE

Transactions on 14 (3):515-516

43. Kubat M, Matwin S Addressing the curse of imbalanced training sets: one-sided selection. In,

1997. Citeseer, pp 179-186

44. Ester M, Kriegel HP, Sander J, Xu X A density-based algorithm for discovering clusters in

large spatial databases with noise. In, 1996. Portland: AAAI Press, pp 226-231

45. Jiawei H, Kamber M (2001) Data mining: concepts and techniques. San Francisco, CA, itd:

Morgan Kaufmann 5

46. Quinlan JR (1993) C4. 5: programs for machine learning. Morgan Kaufmann,

47. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Machine learning

6 (1):37-66

48. John GH, Langley P Estimating continuous distributions in Bayesian classifiers. In, 1995.

Citeseer, pp 338–345

49. Platt J (1999) Sequential minimal optimization: A fast algorithm for training support vector

machines. Advances in Kernel Methods-Support Vector Learning 208:98–112

