
wRACOG: A Gibbs Sampling-Based Oversampling
Technique

Barnan Das∗, Narayanan C. Krishnan†, Diane J. Cook†
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164-2752

Email: ∗barnandas@wsu.edu, †{ckn, cook}@eecs.wsu.edu

Abstract—As machine learning techniques mature and are
used to tackle complex scientific problems, challenges arise such
as the imbalanced class distribution problem, where one of the
target class labels is under-represented in comparison with other
classes. Existing oversampling approaches for addressing this
problem typically do not consider the probability distribution
of the minority class while synthetically generating new samples.
As a result, the minority class is not well represented which
leads to high misclassification error. We introduce wRACOG,
a Gibbs sampling-based oversampling approach to synthetically
generating and strategically selecting new minority class samples.
The Gibbs sampler uses the joint probability distribution of data
attributes to generate new minority class samples in the form of a
Markov chain. wRACOG iteratively learns a model by selecting
samples from the Markov chain that have the highest probability
of being misclassified. We validate the effectiveness of wRACOG
using five UCI datasets and one new application domain dataset.
A comparative study of wRACOG with three other well-known
resampling methods provides evidence that wRACOG offers a
definite improvement in classification accuracy for minority class
samples over other methods.

Keywords—Imbalanced class distribution; oversampling; Gibbs
sampling; Markov chain Monte Carlo (MCMC).

I. INTRODUCTION

With a wide spectrum of industries drilling down into
their data stores to collect previously unused data, data are
being treated as the “new oil”. Social media, e-commerce,
and healthcare companies are refining and analyzing data with
the goal of creating new products and/or adding value to
existing ones. As machine learning techniques mature and find
application in diverse data domains, new challenges arise from
the data. One well-recognized challenge is the imbalanced
class distribution problem, where one of the target classes
(the minority class) is under-represented in comparison with
the other class(es) (the majority class(es)). A widely accepted
rule of thumb is: any dataset that contains less than ∼ 10%
minority class samples is considered to be imbalanced. The
class imbalance problem exists in a variety of problem domains
that include network intrusion detection [1], fraud detection
[2], oil-spill detection [3], keyword extraction [4], any many
more, where identifying members of the minority class is
critical, sometimes more so than achieving optimal overall
accuracy for the majority class.

The imbalance class distribution problem has received fo-
cused attention for over a decade. The common techniques that
have been investigated include: resampling, which balances
class priors of training data by either increasing the number of
minority class data samples (oversampling) or decreasing the

number of majority class data samples (undersampling); cost-
sensitive learning, which assigns higher misclassfication cost
of minority class samples than majority class; and kernel-based
learning methods, which make the minority class samples
more separable from the majority class by mapping the data
to a high dimensional feature space. In addition to their ease
of implementation, resampling methods have been preferred
over other methods for a number of reasons [5]. First, because
resampling occurs during preprocessing, the approach can be
combined with others such as cost-sensitive learning, without
changing the algorithmic anatomy [6]. Second, theoretical
connections between resampling and cost-sensitive learning
indicate that resampling can alter the misclassification costs
of data points [7]. Third, empirical evidence demonstrates
nearly identical performance between resampling and cost-
sensitive learning techniques [8]. Although both under- and
over-sampling techniques have been improving over the years,
we focus our attention on oversampling because it is well
suited for the application that motivates our investigation.
Moreover, as many class imbalance problems involve an abso-
lute rarity of minority class data samples [9], undersampling
majority class examples is not advisable.

Existing oversampling approaches [10], [11] that add syn-
thetic minority class samples to alleviate class imbalance
problem typically rely on spatial location of these samples
in the Euclidean space. These approaches harvest local infor-
mation of minority class samples to generate new synthetic
samples that are also assumed to belong to the minority
class. Although this approach may be acceptable for data sets
where a crisp decision boundary exists between the classes,
spatial location-based synthetic oversampling is not suitable
for data sets that have overlap between the minority and
majority classes. Therefore, a better idea is to exploit global
information of minority class samples, which can be done by
considering the probability distribution of the minority class
while synthetically generating new minority class samples.

In this paper, we introduce a Gibbs sampling-based over-
sampling method, called wrapper-based RApidly COnverging
Gibbs sampler or wRACOG, for generating and strategically
selecting new minority class samples. Specifically, the pro-
posed algorithm generates new minority class samples via
Gibbs sampling by using the joint probability distribution
and interdependencies of data attributes. wRACOG iteratively
selects samples from the Markov chain generated by the Gibbs
sampler that have the highest probability of being misclassified
by a learning model (wrapper). wRACOG is based on our
previous algorithm RACOG, which also uses Gibbs sampling
to generate a Markov chain, but selects samples from the
Markov chain using a predefined lag.

We validate our approach using five UCI datasets, carefully
modified to exhibit class imbalance, and one new dataset with
inherent extreme class imbalance from a pervasive computing
application domain. The performance of wRACOG is com-
pared with RACOG as well as two existing oversampling
techniques (SMOTE [10] and SMOTEBoost [11]) and an
undersampling technique (RUSBoost [12]).

II. RELATED WORK

Learning from imbalanced class datasets is a niche, yet
critical area in supervised machine learning. Therefore a wide
spectrum of related techniques have been proposed [13], [14]
for improved classification of minority class samples. One of
the most common solutions is cost sensitive learning (CSL)
which subverts the underlying assumption of classifiers that all
misclassification errors are equal. By assigning a sufficiently
high cost to minority class samples, the algorithm devotes more
attention to these points to learn an effective class boundary.
The effectiveness of CSL methods has been validated both
theoretically [7] and empirically [15]. However, the application
of CSL methods is restricted due to the unavailability of cost-
sensitive implementations of well-known learning algorithms
and the need to manually determine the misclassification cost
of minority class samples.

A second direction involves adapting the underlying clas-
sification algorithm to consider imbalanced classes, typically
using kernel-based learning methods. For instance, Wu et al.
[16] propose a kernel-boundary alignment (KBA) algorithm
for adjusting the SVM class boundary. KBA is based on the
idea of modifying the kernel matrix generated by a kernel
function according to the imbalanced data distribution. Another
technique proposed by Fung et al., called the k-category
proximal support vector machine (PSVM) [17], transforms the
soft-margin maximization paradigm into a simple system of k-
linear equations for either linear or non-linear classifiers.

The most common approach, however, is to resample, or
modify the dataset in a way that balances the class distri-
bution. Determining the ideal class distribution is an open
problem [18] and in most cases handled empirically. Naive
resampling methods include oversampling the minority class
by duplicating existing data points and undersampling the ma-
jority class by removing chosen data points. However, random
over-sampling and under-sampling increases the possibility of
overfitting and discarding useful information from the data,
respectively. An intelligent way of oversampling is to syn-
thetically generate new minority class samples. For example,
SMOTE [10] constructs new minority class samples that are
close to existing ones by selecting a point on the imaginary
line segment connecting an existing minority class sample to
its k-minority class nearest neighbors in the Euclidean space.
In addition, adaptive synthetic sampling technique Borderline-
SMOTE [19], generates synthetic samples only for those
minority class samples that are closest to the decision boundary
between the two classes. ADASYN [20], on the other hand,
uses the density distribution of the minority class samples as
a criterion to automatically decide the number of synthetic
samples that need to be generated for each minority class
sample. There are other methods that combine the powers
of resampling and ensemble learning, SMOTEBoost [11],
RUSBoost [12], and SMOTE-Bagging [21].

The fundamental principle of oversampling techniques such
as SMOTE, Borderline-SMOTE and SMOTEBoost, is to gen-
erate new data samples that are spatially close to existing
minority class samples in the Euclidean space. Ideally, the
new data samples are representative of the entire minority
class and not just of a local region. Therefore, in this paper
we focus on satisfying the criteria of global representation
of the minority class by generating multivariate samples from
the joint probability distribution of the underlying random
variables or attributes.

III. MOTIVATION AND APPLICATION

We are motivated to pursue this challenge by a problem
in pervasive computing. Specifically, we are designing smart
environments that perform health monitoring and assistance.
One type of assistance that is valuable for individuals with
cognitive impairment is automated prompts that aid with activ-
ity initiation and completion. We postulate that prompt timing
can be automated by incorporating contextual information of
an activity provided by a smart home.

To determine the ability of a machine learning algorithm
to generate appropriate activity-aware prompts, we performed
a study in our smart home with 128 volunteer participants,
aged 50+, who are healthy older adults or individuals with
mild cognitive impairment. The smart home is a two-story
apartment equipped with sensors that monitor motion, door
open/shut status, and usage of water, burner, and specific
items throughout the apartment. Clinically-trained psycholo-
gists watch over a web camera as the participants perform
8 different activities. The psychology experimenter remotely
issues a prompt when they determine that the individual is
having difficulty initiating or completing an activity. Sensor
events, denoted by the event date, time, sensor identifier, and
message, are collected continuously, along with the prompt
timings. A human annotator determines the beginning and end
of an activity and its sub-steps from the sensor events and tags
them with appropriate labels. On the basis of these annotations,
the feature vector for every activity sub-step (which could be a
collection of consecutive sensor events) present in the database
is generated that consists of temporal, spatial and contextual
features.

We can view automated prompting as a supervised learning
problem in which each activity step is mapped to a “prompt”
or “no-prompt” class label. Ground truth for the class labels
is provided by the experimenter-based timing of manually-
initiated prompts in the study. The prompting dataset1, as we
would like to call it, has 3980 examples with 17 features.
Out of the 17 features, 4 are categorical and the rest are
numeric. The difficulty that is faced for the prompting problem
is that the majority of activity steps are “no-prompt” cases
and standard machine learning algorithms will likely map
all data points to this class, which defeats the purpose of
the intervention. Our goal is to design solutions to the class
imbalance problem that improve sensitivity for this prompting
application.

We evaluate the applicability of our algorithm on five
additional real-world datasets from the UCI machine learning
repository that exhibit the class imbalance problem: abalone,

1Available at: http://ailab.wsu.edu/casas/datasets/prompting.zip

TABLE I. DESCRIPTION OF SELECTED DATASETS

Dataset Size Dim % Min. Class Description
Prompting 3,980 17 3.7437 Predicting intervention times in daily activities of older individuals with dementia.
Abalone 4,177 8 6.2006 Predicting age of large sea snails, abalone, from its physical measurements.

Car 1,728 6 3.9931 Evaluating car acceptability based on price, technology and comfort.
Nursery 12,960 8 2.5463 Nursery school application evaluation based on financial standing, parents’ education and social health.
Letter 20,000 16 3.7902 Classifying English alphabets using image frame features.

Connect-4 5000 42 10.0000 Predicting first player’s outcome in connect-4 game given 8-ply positions information .

car, nursery, letter, and connect-4. Characteristics of these
datasets are summarized in Table I. The real-valued attributes
were transformed into discrete sets using equal-width binning.
The multi-class datasets were converted into binary classes by
choosing a particular class label as the minority class and the
rest of the class labels together as the majority class.

IV. PROPOSED METHOD: WRACOG

Our proposed approach to oversampling for imbalanced
class distributions uses Gibbs sampling to generate new mi-
nority class data samples. Gibbs sampling is a type of Markov
chain Monte Carlo (MCMC) method which originated with the
Metropolis algorithm [22], [23]. A Markov chain is a collection
of random variables with the property that, given the present,
the future is conditionally independent of the past. A first-
order Markov chain is defined as a series of random variables
z(1), ..., z(M), such that the conditional independence property
given in Equation 1 holds true for m ∈ {1, ..,M − 1}.

P (z(m+1)|z(1), .., z(m)) = P (z(m+1)|z(m)) (1)

The equation can be represented as a directed graph that
forms a chain as shown in Figure 1. A Markov chain is thus
specified by the probability distribution of the initial variable
P (z(0)) and the conditional probabilities of the subsequent
variables (also known as transition probabilities).

Fig. 1. A Markov chain

Therefore, the marginal probability of a variable of interest
can be expressed in terms of the marginal probability of
the previous variable and the transition probability from the
previous variable to the current variable (see Equation 2).

P (z(m+1)) =
∑
z(m)

P (z(m+1)|z(m))P (z(m)) (2)

A. Standard Gibbs Sampler

The goal of a Gibbs sampler is to create a Markov chain of
random variables that converge to a target probability distribu-
tion. The approach is applicable in situations where a random
variable Z has at least two dimensions (z =< z1, .., zk >, k >
1). At each sampling step, the algorithm considers univariate
conditional distributions where each of the dimensions but
one is assigned a fixed value. Rather than picking the entire
collection of attribute values at once, a separate probabilistic
choice is made for each of the k dimensions, where each choice

depends on the values of the other k − 1 dimensions and
the previous value of the same dimension. Such conditional
distributions are easier to model than the full joint distribution.
Figure 2 shows the algorithm for the standard Gibbs sampler.
As we would explain in this section, we exploit the uni-
variate conditional distribution of each dimension, represented
by P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
, to probabilistically

choose attribute values that form a new synthetically generated
sample.

Algorithm 1: Gibbs Sampler
1: Z(0) =< z

(0)
1 , ..., z

(0)
k >

2: for t = 1 to T
3: for i = 1 to k
4: z

(t+1)
i ∼ P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
Fig. 2. Gibbs Sampling

Implementation of Gibbs samplers are traditionally de-
pendent on two factors. The first factor is the number of
sample generation iterations that are needed for the samples
to reach a stationary distribution, that is, when the marginal
distribution of Z(n) is independent of n. In order to avoid the
estimates being contaminated by values at iterations before
that point (referred to as the burn-in), earlier samples are
discarded. The second factor is based on the fact that a sample
generated during one iteration is highly dependent on the
previous sample. This correlation between successive values,
or autocorrelation, is avoided by defining a suitable lag, or
number of consecutive samples to be discard from the Markov
chain following each accepted generated sample.

B. Factoring Joint Probability Distribution

A stumbling block in successful usage of Gibbs sampling
is calculating the conditional distribution that appears in Step 4
of the algorithm (Figure 2) which is used to probabilistically
determine attribute values for the new sample. A simplified
version of the conditional distribution, shown in Equation 3,
calculates a ratio between the joint probability of all attribute
values for the random variable and a normalizing factor.

P
(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
=

P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i , z

(t)
i+1, ..., z

(t)
k

)
P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

) (3)

However, in cases of datasets which have extremely rare
minority class samples and a sufficiently high dimensional
feature vector, the probability of joint occurrences of other
attribute values is extremely low due to an insufficient number
of such minority class samples. Because the standard Gibbs
sampling algorithm does not impose dependencies on attributes

Algorithm 2: Chow-Liu Dependence Tree Construction
1: Compute the mutual information between each pair of variables,
i 6= j: IP (Xi;Xj) =

∑
x,y

P (x, y)log P (x,y)
P (x),P (y)

2: Build a complete undirected graph with variables in X as vertices
and the weight of an edge connecting Xi and Xj by IP (Xi;Xj).

3: Build a maximum weighted spanning tree.
4: Transform the resulting undirected tree to a directed one by

choosing a root variable and setting the direction of all edges
to be outward from it.

Fig. 3. Chow-Liu Dependence Tree Construction

of the random variables, the sampling performed in Step 4
of the algorithm disallows exploration of the entire space of
attributes and is therefore less likely to generate points that are
consistent with such a minority class distribution. On the other
hand, considering a full joint distribution will be prone to error
because there are insufficient minority points to accurately
estimate the probabilities that are used in Equation 3.

As we will see, the proposed algorithm explores the state
space of attributes more thoroughly by factoring the large-
dimensional joint distribution into a directed acyclic graph
(DAG) that imposes explicit dependencies between attributes.
Thus, the probability of a particular data sample, x, represented
as a collection of attributes {xi : 1 ≤ i ≤ M}, is computable
as:

P (x) =
∏
i

P (xi|xparents(i)) (4)

Traditionally, a DAG is constructed by learning a Bayesian
network using search techniques such as hill climbing or
simulated annealing. An alternative, less computationally ex-
pensive approach, is to employ the Chow-Liu algorithm (1968)
described in Figure 3, to construct a Bayesian tree of depen-
dencies by reducing the problem of constructing a maximum
likelihood tree to that of finding a maximal weighted span-
ning tree in a graph. Thus, the Chow-Liu algorithm runs in
O(D2log(D)) time where D is the dimension of the data.
Our algorithm employs this approach to finding a Bayesian
tree among attribute dependencies. This allows each attribute
(but the root) to have exactly one parent on which its value
depends [24]. Figure 4 shows Bayesian trees formed from the
abalone and car datasets, where attributes length and lug boot
are chosen as the roots of the Bayesian trees for abalone
and car, respectively. Thus the joint probability distribution
in Equation 3 is now factored as follows:

P
(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
=

P
(
zroot

∏
x P (zx|zparents(x))

)
P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

) (5)

C. The RACOG Algorithm

We first describe the RACOG algorithm and even-
tually show what improvements have been incorporated
in wRACOG. The RApidy COnverging Gibbs sampler
(RACOG) uses Gibbs sampling to generate new minority class
samples from the probability distribution of the minority class

Fig. 4. Trees for (left) abalone and (right) car datasets

approximated using Chow-Liu algorithm. RACOG enhances
standard Gibbs sampling by offering an alternative mechanism
for choosing the initial values of the random variable Z
(denoted by Z(0)), that help generate samples which rapidly
converge to the target (minority class) distribution, and by
imposing dependencies among the attributes which form the k
dimensions of the random variable.

Conventionally, the initial values of the random variable to
“ignite” the Gibbs sampler are randomly chosen from the state
space of the attributes. This approach requires a high burn-in
period and an extremely large number of iterations for the
sampler to converge with the target distribution. On the other
hand, in RACOG, we choose the minority class data points as
the set of initial samples and run the Gibbs sampler for every
minority class sample. The total number of iterations for the
Gibbs sampler is restricted by the desired minority:majority
class distribution. Thus, RACOG produces multiple Markov
chains, each starting with a different minority class sample,
instead of one very long chain as done in conventional Gibbs
sampling. As the initial samples of RACOG are chosen di-
rectly from the minority class samples, it helps in achieving
faster convergence of the generated samples with the minority
class distribution. This claim is validated with the help of a
convergence test performed in Section VI.

There are arguments in the literature about the pros and
cons of a single long Markov chain versus multiple shorter
chain approaches. Geyer [25] argues that a single long chain is
a better approach because if long burn-in periods are required
or if the chains have high autocorrelations, using a number
of shorter chains may result in chains that are too short to
adequately represent the minority class. However, a single long
chain requires a very large number of iterations to converge
with the target distribution. Our experiments show that the
argument made by Geyer does not hold when multiple chains
are generated using the minority class samples as the initial
samples of the Gibbs sampler.

Finally, to generate a new minority class sample, the
value of an attribute i represented by z

(t+1)
i is determined

by randomly sampling from the distribution of the state
space (all possible values) of attribute i represented by
P
(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
. Figure 5 summarizes

the RACOG algorithm that in O(D2log(D) + N.T.D) time
where, D = dimension of data, N = cardinality of minority
class, and T = predetermined number of iterations.

While the RACOG algorithm enhances the traditional
Gibbs sampler by making it suitable for class imbalanced data,
this approach does not take into account the usefulness of the
generated samples. As a result, RACOG might add minority

Algorithm 3: RACOG
1: function RACOG (minority, N , k, β, α, T)

Input: minority = minority class data points; N = size of
minority; k = minority dimensions; β = burn-in period; α = lag;
T = total number of iterations
Output: new samples = new minority class samples

2: Construct Bayesian tree BT using Chow-Liu algorithm.
3: for n = 1 to N do
4: Z(0) = minority(n)
5: for t = 1 to T do
6: for t = 1 to k do
7: Simplify P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
using BT and Equation 3.

8: z
(t+1)
i ∼ P (Si) where Si is the state space

of attribute i.
9: if t > β AND t mod (α) = 0

10: new samples = new samples + Z(t)

11: return new samples

Fig. 5. The RACOG Algorithm

class samples that are redundant and have no contribution
towards constructing a better hypothesis. In order to address
this issue, we propose wRACOG, an enhancement to the
RACOG algorithm.

D. The wRACOG algorithm

The enhanced RACOG algorithm, named wRACOG, is a
wrapper-based technique over RACOG utilizing Gibbs sam-
pling as the core data sampler. The purpose of introducing
wRACOG is to get rid of burn-in, lag and predefined number
of iterations associated with sample selection in Gibbs sam-
pling. By performing iterative training on the dataset with
newly generated samples, wRACOG selects those samples
from the Markov chain that have the highest probability of
being misclassified by the learning model generated from the
previous version of the dataset.

While the RACOG algorithm generates minority class
samples for a fixed (predefined) number of iterations, the
wRACOG algorithm keeps on fine tuning its hypothesis at
every iteration by adding new samples until there is no further
improvement with respect to a chosen performance measure.
As our goal is to improve the performance of classifiers on the
minority class, wRACOG keeps on adding new samples until
there is no further improvement in sensitivity (true positive
rate) of the wrapper classifier (the core classifier that retrains
at every iteration) of wRACOG. This process acts as the
“stopping criterion” for the wRACOG algorithm. Please note
that sensitivity is not an invariant choice for the stopping
criteria. Other performance measures, such as precision, F-
measure, etc. can also be used and the choice is entirely
application dependent.

At each iteration of wRACOG, new minority class samples
are generated by the Gibbs sampler. The model learned by the
wrapper classifier on the enhanced set of samples produced
in the previous iteration is used to make predictions on the
newly generated set of samples. During classification, the class
labels of the new samples are assumed to be the same as
the minority class because the Gibbs sampler produces new
samples from the probability distribution of the minority class.
Those samples that are misclassified by the model are added

Algorithm 4: wRACOG
1: function wRACOG (train, validation, wrapper, slide win,

threshold, slide win)
Input: train = training dataset enhanced at each iteration with
new samples; validation = validation set on which trained model
is tested at every iteration to track improvements; wrapper =
classifier that is retrained on the enhanced dataset at every
iteration; slide win = sensitivities of previous iterations; threshold
= threshold of standard deviation of sensitivities over slide win
Output: new train = final hypothesis encoded in the oversampled
training set

2: Build model by training wrapper on train
3: Run Gibbs sampler on all minority class samples simultaneously
4: do
5: Perform prediction on newly generated samples using model
6: Add misclassified samples to form new train
7: Train model on new train using wrapper
8: Perform prediction on validation set using trained model

and add sensitivity to slide win
9: while (σ(slide win) ≥ threshold)

10: return new train

Fig. 6. The wRACOG Algorithm

to the existing set of data samples and a new model is trained
using the wrapper classifier. At each iteration, the trained
model performs prediction on a held out validation set and the
sensitivity of the model is recorded. Generation of new samples
stops once the standard deviation of sensitivities over the past
iterations falls below a threshold. As the wRACOG algorithm
might end up running many iterations, the standard deviation of
sensitivities is calculated over a fixed number of most recent
iterations (slide win). We use the values slide win=10 and
threshold=0.02 for our experiments, determined by performing
an empirical study on the datasets described in this paper. The
wRACOG algorithm is summarized in Figure 6. wRACOG
runs in O(D2log(D) + B.N.D + B.W) time where, D =
dimension of data, B = number of sample batches generated
before stopping criteria is satisfied, N = cardinality of minor-
ity class, and W = time complexity of wrapper classifier.

Although wRACOG is similar to existing boosting tech-
niques (such as AdaBoost) in the way misclassified samples
are assigned higher weights to ensure their selection during
random sampling in the next boosting iteration, there are
a number of major differences. Firstly, while in traditional
boosting, both training and prediction are performed on the
same set of data samples, wRACOG trains the current hy-
pothesis on the data samples from the previous iteration and
performs prediction only on the newly generated samples
from the Gibbs sampler. Secondly, there is no concept of
changing weights of the samples before resampling, as the
newly generated samples are directly added to the existing set
of samples. Thirdly, wRACOG does not use weighted voting
of multiple hypotheses learned at every iteration. Instead, it
employs multiple iterations to fine tune a single hypothesis.
We hypothesize that by applying this approach we can reduce
the generation of redundant samples to converge more closely
to the true distribution of the minority class, and also reduce
the overhead of generating multiple hypotheses as is employed
by traditional boosting techniques.

V. EXPERIMENTAL SETUP

We hypothesize that Gibbs sampling, with additional mod-
eling of attribute dependencies, will yield improved results
over existing resampling methods for problems that exhibit
class imbalance. We compare the performance of the classifiers
on datasets preprocessed by wRACOG, RACOG, and three
well-known sampling techniques, against the datasets with no
preprocessing (henceforth named Baseline).

SMOTE: SMOTE [10] oversamples the minority class by
creating “synthetic” samples based on spatial location of the
samples in the Euclidean space. Oversampling is performed
by considering each minority class sample and introducing
synthetic examples along the line segments joining any or
all of the k-minority class nearest neighbors. The k-nearest
neighbors are randomly chosen depending upon the amount of
oversampling that is required. Synthetic samples are generated
in the following way: First, the difference between the minority
class sample under consideration and its nearest neighbor is
computed. This difference is multiplied by a random num-
ber between 0 and 1, and it is added to the sample under
consideration to form a new sample. Consequently, by adding
diversity to the minority class, this approach forces the decision
boundary between the two regions to be crisper. However,
as SMOTE does not rely on the probability distribution of
the minority class as a whole, there is no guarantee that
the generated samples would belong to the minority class,
especially when the samples from the majority and minority
classes overlap [26]. We use SMOTE to produce a 50:50
distribution of minority and majority class samples, which is
considered as near optimum [27].

SMOTEBoost: By using a combination of SMOTE and a
standard boosting procedure, SMOTEBoost [11] models the
minority class by providing the learner with misclassified
minority class samples from the previous boosting iteration
and a broader representation of those samples achieved by
SMOTE. The inherent skewness in the updated distribution
is rectified by introducing SMOTE to increase the number
of minority class samples according to the new distribution.
SMOTEBoost maximizes the margin of the skewed class
dataset and increases the diversity among the classifiers in the
ensemble by producing a unique set of synthetic samples at
every iteration. Although iterative learning of the weak learner
by the boosting procedure attempts to form a hypothesis
which improves the classification of minority class samples,
the quality of the generated samples is still dependent on the
spatial location of minority class samples in the Euclidean
space, as is done by SMOTE. Moreover, if SMOTEBoost
executes SMOTE k times (for k boosting iterations), generat-
ing k× (#majority class samples −#minority class samples)
samples is computationally expensive.

RUSBoost: RUSBoost [12] is very similar to SMOTE-
Boost, but claims to achieve better classification performance
on the minority class samples by randomly under-sampling
(RUS) the majority class. Although this method results in a
simpler algorithm with a faster model training time, it fails to
achieve desired performance (explained later in Section VI) as
claimed by Seiffert et al., especially when the datasets have an
absolute rarity of minority class samples. As most of the data
sets under consideration have an absolute rarity of minority
class samples, the class imbalance ratio has been set to 35:65

(minority:majority). The choice of class distribution is based
on the empirical investigations performed by Khoshgoftaar et
al. [28] which verify that a 35:65 class distribution would
result in better classification performance than a 50:50 class
distribution when samples from one class are extremely rare
as compared to others.

wRACOG and its predecessor RACOG are compared with
the aforementioned alternative sampling techniques. RACOG
oversamples the minority class to achieve a 50:50 class dis-
tribution. Therefore, the total number of iterations is fixed
and is determined on the basis of (#majority class samples
−#minority class samples), burn-in and lag. A burn-in period
of 100 and a lag of 20 iterations are chosen as the convention in
the literature [29] to avoid autocorrelation among the samples
generated by the Gibbs sampler. wRACOG, on the other hand,
adds samples to the minority class until the standard deviation
of sensitivity (true positive rate) over the 10 recent iterations
falls below an empirically determined threshold. The classifiers
presented in Table II are used as wrapper classifiers and are
trained on an enhanced dataset at every iteration of wRACOG.

We choose four of the best-known classifiers in machine
learning to evaluate the performance of the proposed method
and other sampling approaches: decision tree, SVM, k-nearest
neighbor and logistic regression. We performed parameter
tuning of the chosen classifiers on the baseline data before
pre-processing. The parameter values of the classifiers that
performed best on the baseline datasets are used in conducting
experiments with the existing and proposed sampling ap-
proaches. Table II lists parameter values for the corresponding
classifiers.

TABLE II. CLASSIFIERS AND PARAMETER VALUES

Classifier Parameter Values
C4.5 Decision Tree Confidence factor = 2, Minimum # instances per leaf = 2

SVM Kernel = RBF, RBF kernel γ = 0.01
k-Nearest Neighbor k =5, Distance measure = Euclidean
Logistic Regression Log likelihood ridge value = 1× 10(−8)

All experiments are performed using 5-fold cross vali-
dation where prediction is performed on unsampled held-
out data. We report the following performance measures
in this paper: Sensitivity (true positive rate), G-mean
(
√

true positive rate× true negative rate), and Area Under
ROC Curve (AUC-ROC).

VI. RESULTS AND DISCUSSION

The primary limitation of classifiers that model imbalanced
class datasets is in achieving desirable prediction accuracy
for the minority class. That is, the sensitivity is typically
low assuming that the minority class is represented as the
positive class. The proposed approach places emphasis on
boosting the sensitivity of the classifiers while maintaining a
strong prediction performance for both of the classes, which
is measured by G-mean. However, we understand that the
choice of performance measure that needs to be boosted when
dealing with class imbalanced dataset is tightly coupled with
the application domain. Moreover, finding a trade-off between
improving classifier performance on the minority class in
isolation and on the overall dataset should ideally be left at
the discretion of the domain expert.

Fig. 7. Sensitivity for C4.5 Decision Tree

We compare the sensitivity of the C4.5 decision tree across
all six approaches in Figure 7. From the figure it is quite
evident that both wRACOG and RACOG perform better than
the other methods, although the variation in performance of
RACOG and wRACOG is not significant. RUSBoost fails by
performing nowhere close to the oversampling techniques. The
poor performance of RUSBoost can be attributed to the rarity
of minority class samples in the datasets under consideration.
When the minority class samples are already rare, random
under-sampling of the majority class to achieve a 35:65 class
distribution, as is done by RUSBoost at each iteration, makes
the majority class samples rare as well. Thus, the weak leaner
of RUSBoost does not learn anything on the majority class
which increases the error rate of the hypothesis at every iter-
ation. Both SMOTE and SMOTEBoost are good contenders,
although SMOTEBoost outperforms SMOTE in most of the
cases. Although wRACOG performs better than RACOG on
four datasets, they perform equally well for the car and
nursery datasets. We verify the statistical significance of these
improvements using a Student’s t test. RACOG and wRACOG
do exhibit significant (p < 0.05) performance improvement
over SMOTEBoost. Experimental results using other classifiers
and statistical significance of the performance improvements
(in bold) of RACOG and wRACOG over SMOTEBoost are
given in Tables V, VI and VII.

Because the sampling techniques boost the minority class,
there is a tendency for the false positive rate to increase
(see Table III). However, the increase in false positive rate
is not very significant and therefore it does not affect the
G-mean scores. Figure 8 reports the G-mean scores of C4.5
decision tree on all the methods when tested with the six
datasets. Clearly, RACOG and wRACOG result in a supe-
rior performance over SMOTE and SMOTEBoost. However,
SMOTEBoost is a very strong contender.

In Figure 9, we plot the ROC curves produced by the
different approaches on each of the 6 datasets when evaluated
with a C4.5 decision tree. For the prompting, abalone and
car datasets, Baseline and RUSBoost do not perform any

TABLE III. FALSE POSITIVE RATES FOR C4.5 DECISION TREE

Dataset prompting abalone car nursery letter connect-4
Baseline 0 0 0 0.0051 0.0031 0.0096

SMOTEBoost 0.0117 0.1959 0.0072 0.0008 0.0046 0.0356

wRACOG 0.1178 0.3696 0.0265 0.0111 0.0832 0.0693

Fig. 8. G-mean for C4.5 Decision Tree

better than random prediction. The performance of RACOG
and wRACOG are clearly better than SMOTE and SMOTE-
Boost for the prompting dataset. However, there is no clear
winner among them for the abalone, car and nursery datasets.
connect-4 has a very unique ROC plot which helps in analyz-
ing the performance of the classifiers distinctly. This unique
characteristic of connect-4 is probably because all 42 attributes
(representing each position of a 7×6 grid) of this dataset have
only three possible categorical values: position taken by player
A, position taken by player B, and blank, which gives the win
or minority class a very distinct pattern. The AUC-ROCs are
reported in Table IV. For the letter and connect-4 datasets,
the AUC-ROC for SMOTEBoost is higher than RACOG and
wRACOG. However, no statistically significant improvement
of RACOG and wRACOG was found over SMOTEBoost
based on AUC-ROC. As there is no clear winner between
RACOG and wRACOG on any of the performance measures
we do not conduct any statistical significance test between
them.

Convergence Diagnostic Test: In the current work we
explore the strengths of Markov chain Monte Carlo techniques,
specifically Gibbs sampling, to generate new minority class
samples. A major issue for the successful implementation
of any MCMC technique is to determine the number of
iterations required for the generated samples to converge to
the target distribution. Researchers in econometrics [30] use
formal methods such as the Raftery-Lewis test [29] to make
this determination. Given outputs from a Gibbs sampler, the
Raftery-Lewis test provides the answer to: how long should we
monitor the chain of samples? Here, one specifies a particular
quantile q of the distribution of interest (typically 2.5% and
97.5%, to give a 95% confidence interval), an accuracy σ of the
quantile, and a power 1−β for achieving this accuracy on the
specified quantile. These parameters are used to determine the
burn-in (M), the total number of iterations required to achieve
the desired accuracy for the posterior (N), the appropriate lag
(k), and the number of iterations (Nmin) that would be needed
if the samples represented an independent and identically
distributed (iid)2 chain, which is not true in our case because
of the autocorrelation structure present in the Markov chain
of generated samples. These output values can be combined

2An iid sequence is a very special kind of Markov chain; whereas a Markov
chain’s future is allowed (but not required) to depend on the present state, an
iid sequence’s future does not depend on the present state at all.

TABLE IV. AUC-ROC FOR C4.5 DECISION TREE

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.5000± 0.0000 0.8681± 0.0359 0.8546± 0.0334 0.5000± 0.0000 0.8851± 0.0207 0.8717± 0.0404

abalone 0.5000± 0.0000 0.8693± 0.0272 0.8718± 0.0262 0.5000± 0.0000 0.8646± 0.0233 0.8727± 0.0208
car 0.5000± 0.0000 0.9595± 0.0320 0.9957± 0.0025 0.5000± 0.0000 0.9879± 0.0027 0.9904± 0.0067

nursery 0.9849± 0.0077 0.9515± 0.0219 0.9999± 0.0001 0.7999± 0.0456 0.9968± 0.0005 0.9967± 0.0005
letter 0.8745± 0.0056 0.9340± 0.0153 0.9865± 0.0080 0.8226± 0.0286 0.9659± 0.0102 0.9707± 0.0026

connect-4 0.6215± 0.0310 0.6907± 0.0335 0.8317± 0.0140 0.5552± 0.0092 0.7333± 0.0181 0.7115± 0.0282

TABLE V. PERFORMANCE COMPARISON OF ALL APPROACHES USING SVM

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0000 ± 0.0000 0.6667 ± 0.0667 0.2600 ± 0.0641 0.0000 ± 0.0000 0.5600 ± 0.1011 0.5400 ± 0.0723

abalone 0.0000 ± 0.0000 0.9462 ± 0.0251 0.8462 ± 0.0769 0.0000 ± 0.0000 0.9385 ± 0.0161 0.9846 ± 0.0161

car 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9000 ± 0.1195 0.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

nursery 0.0000 ± 0.0000 0.9939 ± 0.0136 0.9848 ± 0.0186 0.7091 ± 0.0529 1.0000 ± 0.0000 1.0000 ± 0.0000

letter 0.4645 ± 0.0430 0.9026 ± 0.0409 0.9092 ± 0.0388 0.6487 ± 0.0396 0.9289 ± 0.0220 0.9364 ± 0.0166

connect-4 0.0000 ± 0.0000 0.6233 ± 0.0473 0.5680 ± 0.0383 0.0000 ± 0.0000 0.7880 ± 0.0390 0.9867 ± 0.0153

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0000 ± 0.0000 0.7653 ± 0.0419 0.5008 ± 0.0587 0.0000 ± 0.0000 0.7184 ± 0.0612 0.7053 ± 0.0430

abalone 0.0000 ± 0.0000 0.8049 ± 0.0079 0.8087 ± 0.0324 0.0000 ± 0.0000 0.8020 ± 0.0096 0.7850 ± 0.0140

car 0.0000 ± 0.0000 0.9629 ± 0.0028 0.9278 ± 0.0633 0.0000 ± 0.0000 0.9632 ± 0.0076 0.9660 ± 0.0075

nursery 0.0000 ± 0.0000 0.9742 ± 0.0065 0.9817 ± 0.0095 0.8403 ± 0.0320 0.9660 ± 0.0020 0.9760 ± 0.0042

letter 0.6804 ± 0.0316 0.9341 ± 0.0223 0.9484 ± 0.0195 0.8034 ± 0.0244 0.9351 ± 0.0115 0.9395 ± 0.0046

connect-4 0.0000 ± 0.0000 0.7306 ± 0.0282 0.7135 ± 0.0221 0.0000 ± 0.0000 0.8007 ± 0.0210 0.8269 ± 0.0351

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.5000 ± 0.0000 0.7734 ± 0.0384 0.8620 ± 0.0170 0.5000 ± 0.0000 0.7437 ± 0.0490 0.7332 ± 0.0316

abalone 0.5000 ± 0.0000 0.8156 ± 0.0100 0.8792 ± 0.0339 0.5000 ± 0.0000 0.8121 ± 0.0074 0.8054 ± 0.0102

car 0.5000 ± 0.0000 0.9636 ± 0.0027 0.9772 ± 0.0132 0.5000 ± 0.0000 0.9639 ± 0.0073 0.9666 ± 0.0073

nursery 0.5000 ± 0.0000 0.9744 ± 0.0065 0.9958 ± 0.0006 0.8530 ± 0.0264 0.9665 ± 0.0020 0.9763 ± 0.0041

letter 0.7315 ± 0.0213 0.9348 ± 0.0214 0.9915 ± 0.0050 0.8222 ± 0.0194 0.9351 ± 0.0114 0.9396 ± 0.0045

connect-4 0.5000 ± 0.0000 0.7402 ± 0.0238 0.8503 ± 0.0081 0.5000 ± 0.0000 0.8010 ± 0.0204 0.8210 ± 0.0203

TABLE VI. PERFORMANCE COMPARISON OF ALL APPROACHES USING K-NEAREST NEIGHBOR

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0533 ± 0.0298 0.6333 ± 0.0471 0.4667 ± 0.2055 0.0600 ± 0.0435 0.7533 ± 0.0767 0.6600 ± 0.0760

abalone 0.0000 ± 0.0000 0.8885 ± 0.0498 0.8308 ± 0.0896 0.0000 ± 0.0000 0.8846 ± 0.0360 0.9423 ± 0.0136

car 0.0429 ± 0.0639 0.7571 ± 0.1644 0.9286 ± 0.0505 0.0286 ± 0.0391 1.0000 ± 0.0000 1.0000 ± 0.0000

nursery 0.3121 ± 0.0409 0.9364 ± 0.0561 0.9727 ± 0.0166 0.3303 ± 0.0046 1.0000 ± 0.0000 1.0000 ± 0.0000

letter 0.7566 ± 0.0372 0.9118 ± 0.0374 0.8987 ± 0.0253 0.7250 ± 0.0225 0.9211 ± 0.0186 0.9189 ± 0.0166

connect-4 0.0360 ± 0.0134 0.7133 ± 0.0586 0.4940 ± 0.0654 0.0380 ± 0.0110 0.6100 ± 0.0436 0.8833 ± 0.0651

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.2243 ± 0.0607 0.7547 ± 0.0268 0.6449 ± 0.1423 0.2144 ± 0.1318 0.8272 ± 0.0418 0.7798 ± 0.0405

abalone 0.0000 ± 0.0000 0.8301 ± 0.0198 0.8177 ± 0.0367 0.0000 ± 0.0000 0.8311 ± 0.0192 0.7841 ± 0.0127

car 0.1290 ± 0.1810 0.8093 ± 0.0729 0.9193 ± 0.0244 0.1069 ± 0.1464 0.8916 ± 0.0187 0.9471 ± 0.0071

nursery 0.5578 ± 0.0358 0.9262 ± 0.0206 0.9670 ± 0.0105 0.5741 ± 0.0309 0.9171 ± 0.0040 0.9832 ± 0.0025

letter 0.8683 ± 0.0213 0.9361 ± 0.0198 0.9366 ± 0.0122 0.8503 ± 0.0130 0.9350 ± 0.0102 0.9431 ± 0.0099

connect-4 0.1869 ± 0.0358 0.7097 ± 0.0295 0.6596 ± 0.0445 0.1932 ± 0.0276 0.7153 ± 0.0250 0.6911 ± 0.0184

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.8707 ± 0.0225 0.8670 ± 0.0228 0.8168 ± 0.0197 0.5290 ± 0.0214 0.8854 ± 0.0307 0.8905 ± 0.0168

abalone 0.8819 ± 0.0179 0.8760 ± 0.0338 0.8783 ± 0.0243 0.5000 ± 0.0000 0.8812 ± 0.0210 0.8725 ± 0.0089

car 0.9930 ± 0.0035 0.9543 ± 0.0129 0.9724 ± 0.0112 0.5143 ± 0.0196 0.9932 ± 0.0035 0.9941 ± 0.0043

nursery 0.9999 ± 0.0003 0.9875 ± 0.0073 0.9949 ± 0.0016 0.6652 ± 0.0173 0.9994 ± 0.0002 0.9990 ± 0.0004

letter 0.9872 ± 0.0051 0.9818 ± 0.0074 0.9808 ± 0.0077 0.8613 ± 0.0110 0.9860 ± 0.0062 0.9887 ± 0.0018

connect-4 0.7744 ± 0.0426 0.7732 ± 0.0185 0.7844 ± 0.0235 0.5183 ± 0.0054 0.8262 ± 0.0241 0.7824 ± 0.0349

TABLE VII. PERFORMANCE COMPARISON OF ALL APPROACHES USING LOGISTIC REGRESSION

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0867 ± 0.0447 0.5667 ± 0.0850 0.2933 ± 0.1657 0.1533 ± 0.0380 0.4667 ± 0.1179 0.4867 ± 0.1043

abalone 0.0000 ± 0.0000 0.9154 ± 0.0258 0.8962 ± 0.0322 0.0000 ± 0.0000 0.8923 ± 0.0421 0.9308 ± 0.0586

car 0.3429 ± 0.1174 0.9571 ± 0.0639 0.8714 ± 0.0782 0.3286 ± 0.1481 1.0000 ± 0.0 1.0000 ± 0.0000

nursery 0.7394 ± 0.0127 0.9424 ± 0.0628 0.9515 ± 0.0392 0.7576 ± 0.0557 1.0000 ± 0.0000 1.0000 ± 0.000

letter 0.6171 ± 0.0482 0.9000 ± 0.0471 0.9197 ± 0.0086 0.6566 ± 0.0205 0.9184 ± 0.0231 0.9518 ± 0.0249

connect-4 0.2920 ± 0.0785 0.6300 ± 0.0361 0.5600 ± 0.0543 0.3040 ± 0.0439 0.8120 ± 0.0327 1.0000 ± 0.0000

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.2845 ± 0.0782 0.7186 ± 0.0503 0.5141 ± 0.1537 0.3861 ± 0.0497 0.6596 ± 0.0784 0.6722 ± 0.0778

abalone 0.0000 ± 0.0000 0.8441 ± 0.0184 0.8264 ± 0.0245 0.0000 ± 0.0000 0.8290 ± 0.0197 0.7971 ± 0.0496

car 0.5746 ± 0.0979 0.9543 ± 0.0322 0.9092 ± 0.0410 0.5556 ± 0.1362 0.9747 ± 0.0050 0.9716 ± 0.0040

nursery 0.8573 ± 0.0066 0.9600 ± 0.0309 0.9655 ± 0.0189 0.8679 ± 0.0319 0.9860 ± 0.0017 0.9887 ± 0.0013

letter 0.7826 ± 0.0305 0.9243 ± 0.0252 0.9329 ± 0.0076 0.8082 ± 0.0122 0.9270 ± 0.0114 0.9286 ± 0.0100

connect-4 0.5293 ± 0.0778 0.7383 ± 0.0234 0.7051 ± 0.0317 0.5438 ± 0.0409 0.8046 ± 0.0164 0.8142 ± 0.0451

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.8714 ± 0.0173 0.8643 ± 0.0371 0.8404 ± 0.0246 0.5691 ± 0.0192 0.8269 ± 0.0482 0.8222 ± 0.0124

abalone 0.8914 ± 0.0082 0.8900 ± 0.0167 0.8756 ± 0.0191 0.4999 ± 0.2852 0.8914 ± 0.0149 0.8832 ± 0.0304

car 0.9778 ± 0.0031 0.9758 ± 0.0039 0.9652 ± 0.0054 0.6562 ± 0.0754 0.9731 ± 0.0080 0.9741 ± 0.0065

nursery 0.9954 ± 0.0007 0.9948 ± 0.0010 0.9923 ± 0.0009 0.8764 ± 0.0279 0.9956 ± 0.0007 0.9948 ± 0.0010

letter 0.9817 ± 0.0025 0.9782 ± 0.0055 0.9756 ± 0.0066 0.8258 ± 0.0096 0.9810 ± 0.0048 0.9787 ± 0.0065

connect-4 0.8769 ± 0.0086 0.8538 ± 0.0088 0.8320 ± 0.0157 0.6403 ± 0.0238 0.8742 ± 0.0276 0.8840 ± 0.0066

Fig. 9. ROC curves produced by C4.5 Decision Tree

to calculate i-stat (given in Equation 6) which measures the
increase in the number of iterations due to dependence in the
sequence (Markov chain). Raftery and Lewis indicate that i-
stat is indicative of a convergence of the sampler if the value
does not exceed 5.

i− stat = M +N

Nmin
(6)

Fig. 10. i-stat values for RACOG and wRACOG

We perform the Raftery-Lewis test for the methods under
consideration. From Figure 10 it is evident that convergence
is almost achieved by both RACOG and wRACOG for the
prompting and letter datasets. However, the wRACOG i-stat
value is greater than the RACOG value for the remainder
of the datasets. Although this indicates that wRACOG could
not converge to the target minority class distribution for
the abalone, nursery and car datasets, we have seen that
wRACOG’s sensitivity and G-mean are better or at par with
RACOG. Therefore, one explanation is that convergence (not
necessarily probabilistic) here is subjective as it is tightly
coupled with the application.

We further analyze the convergence of RACOG and
wRACOG in terms of the number of iterations the Gibbs
sampler undergoes to achieve the i-stat value. From Figure
11 we notice that wRACOG generates much fewer (except

Fig. 11. Comparison of total number of iterations required by different
methods to achieve given i-stat

for connect-4 dataset) number of iterations (∼ 63%) than
RACOG. This explains the poor performance of wRACOG in
terms of probabilistic convergence on the Raftery-Lewis test.
However, the sensitivity and G-mean scores are not affected
by the reduction in the number of iterations.

Fig. 12. Comparison of log(number of instances added) by different methods

The number of samples added to the baseline datasets by
the different oversampling algorithms for achieving the re-
ported performance is also an important parameter to analyze.
Ideally, we would want to obtain a high performance by adding
as less number of samples as possible. Figure 12 illustrates
the number of samples added by the different approaches.
As the number of samples added by SMOTEBoost is far
higher than other methods, we present log10 values of the

number of added samples for better representation. SMOTE
and RACOG try to achieve a 50:50 class distribution and thus
add samples accordingly. SMOTEBoost requires ten boosting
iterations to produce ten hypotheses on which weighted voting
is performed while prediction. The hypothesis learned at each
iteration ht : X × Y −→ [0, 1], stores the samples generated
by SMOTE at every iteration. Hence, SMOTEBoost adds ten
times the number of samples added by SMOTE. Whereas,
wRACOG requires a fraction (∼ 56%) of the number of
samples generated by SMOTE and RACOG, and (∼ 5.6%)
of the number of samples generated by SMOTEBoost, to
obtain superior performance. We attribute this behavior to
wRACOG’s sample selection methodology which ensures the
diversity in the samples that are added.

VII. CONCLUSION

In this paper, we propose a Gibbs sampling-based algo-
rithm for generating new minority class samples for class
imbalanced datasets. A Bayesian tree-based approach is used
to impose dependencies among data attributes. wRACOG
iteratively selects samples from the Markov chain generated
by the Gibbs sampler that have the highest probability of
being misclassified by a classifier. Experiments with wRACOG
on a wide variety of datasets and classifiers indicate that the
algorithm attains higher sensitivity than other methods, while
maintaining higher G-mean. This supports our hypotheses that
generating new samples by considering the distribution of
minority class samples is a good approach to address class
imbalance. However, the datasets used in the experiments do
not have very high dimensions nor are the training samples
in millions. In our future work, we will consider very large
(in terms of dimension and cardinality) datasets. We will also
take into account extreme class imbalance situations, as it
occurs when the minority class is < 1% of the total number
of samples.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant 1064628 and by the National
Institutes of Health under application R01EB009675.

REFERENCES

[1] D. A. Cieslak, N. V. Chawla, and A. Striegel, “Combating imbalance in
network intrusion datasets,” in Proceedings of 2006 IEEE international
conference on granular computing, 2006, pp. 732–737.

[2] C. Phua, D. Alahakoon, and V. Lee, “Minority report in fraud detection:
classification of skewed data,” ACM SIGKDD Explorations Newsletter,
vol. 6, no. 1, pp. 50–59, 2004.

[3] M. Kubat, R. Holte, and S. Matwin, “Machine learning for the detection
of oil spills in satellite radar images,” Machine learning, vol. 30, no. 2,
pp. 195–215, 1998.

[4] P. Turney et al., “Learning algorithms for keyphrase extraction,” Infor-
mation Retrieval, vol. 2, no. 4, pp. 303–336, 2000.

[5] A. Liu, J. Ghosh, and C. Martin, “Generative oversampling for mining
imbalanced datasets,” in Proceedings of the 2007 International Confer-
ence on Data Mining, DMIN, 2007, pp. 25–28.

[6] B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by
cost-proportionate example weighting,” in Third IEEE International
Conference on Data Mining, 2003. ICDM 2003. IEEE, 2003, pp.
435–442.

[7] C. Elkan, “The foundations of cost-sensitive learning,” in International
Joint Conference on Artificial Intelligence, vol. 17, no. 1. Lawrence
Erlbaum Associates Ltd., 2001, pp. 973–978.

[8] K. McCarthy, B. Zabar, and G. Weiss, “Does cost-sensitive learning
beat sampling for classifying rare classes?” in Proceedings of the 1st
international workshop on Utility-based data mining. ACM, 2005, pp.
69–77.

[9] G. Weiss, “Mining with rarity: a unifying framework,” SigKDD Explo-
rations, vol. 6, no. 1, pp. 7–19, 2004.

[10] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: syn-
thetic minority over-sampling technique,” Journal of Artificial Intelli-
gence Research, vol. 16, pp. 321–357, June 2002.

[11] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “SMOTEBoost:
Improving prediction of the minority class in boosting,” Knowledge
Discovery in Databases: PKDD 2003, pp. 107–119, 2003.

[12] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUS-
Boost: A hybrid approach to alleviating class imbalance,” Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 40, no. 1, pp. 185–197, 2010.

[13] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–
1284, 2009.

[14] N. Chawla, “Data mining for imbalanced datasets: An overview,” Data
Mining and Knowledge Discovery Handbook, pp. 875–886, 2010.

[15] X. Liu and Z. Zhou, “The influence of class imbalance on cost-sensitive
learning: an empirical study,” in Data Mining, 2006. ICDM’06. Sixth
International Conference on. IEEE, 2006, pp. 970–974.

[16] G. Wu and E. Chang, “Kba: Kernel boundary alignment considering
imbalanced data distribution,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 786–795, 2005.

[17] G. Fung and O. Mangasarian, “Multicategory proximal support vector
machine classifiers,” Machine Learning, vol. 59, no. 1, pp. 77–97, 2005.

[18] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms,” in Proceedings of the
Fifteenth International Conference on Machine Learning, vol. 445,
1998.

[19] H. Han, W. Wang, and B. Mao, “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,” Advances in Intel-
ligent Computing, pp. 878–887, 2005.

[20] H. He, Y. Bai, E. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in IEEE International
Joint Conference on Neural Networks, 2008 (IEEE World Congress on
Computational Intelligence). IEEE, 2008, pp. 1322–1328.

[21] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets
by using ensemble models,” in Computational Intelligence and Data
Mining, 2009. CIDM’09. IEEE Symposium on. IEEE, 2009, pp. 324–
331.

[22] N. Meteopolis and S. Ulam, “The monte carlo method,” Journal of the
American statistical association, vol. 44, no. 247, pp. 335–341, 1949.

[23] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” The
Journal of Chemical Physics, vol. 21, p. 1087, 1953.

[24] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network
classifiers,” Machine learning, vol. 29, no. 2, pp. 131–163, 1997.

[25] C. Geyer, “Practical markov chain monte carlo,” Statistical Science,
vol. 7, no. 4, pp. 473–483, 1992.

[26] V. Garcı́a, R. Mollineda, and J. Sánchez, “On the k-nn performance in
a challenging scenario of imbalance and overlapping,” Pattern Analysis
& Applications, vol. 11, no. 3, pp. 269–280, 2008.

[27] G. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal of Artificial
Intelligence Research (JAIR), vol. 19, pp. 315–354, 2003.

[28] T. Khoshgoftaar, C. Seiffert, J. Van Hulse, A. Napolitano, and A. Fol-
leco, “Learning with limited minority class data,” in Machine Learning
and Applications, 2007. ICMLA 2007. Sixth International Conference
on. IEEE, 2007, pp. 348–353.

[29] A. Raftery and S. Lewis, “How many iterations in the gibbs sampler,”
Bayesian statistics, vol. 4, no. 2, pp. 763–773, 1992.

[30] J. LeSage and R. Pace, Introduction to spatial econometrics. Chapman
& Hall/CRC, 2009, vol. 196.

