
Handling Class Overlap and Imbalance to Detect
Prompt Situations in Smart Homes

Barnan Das∗, Narayanan C. Krishnan†, Diane J. Cook†
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164-2752

Email: ∗barnandas@wsu.edu, †{ckn, cook}@eecs.wsu.edu

Abstract—The class imbalance problem is a well-known classi-
fication challenge in machine learning that has vexed researchers
for over a decade. Under-representation of one or more of the
target classes (minority class(es)) as compared to others (majority
class(es)) can restrict the application of conventional classifiers
directly on the data. In addition, emerging challenges such as
overlapping classes, make class imbalance even harder to solve.
Class overlap is caused due to ambiguous regions in the data
where the prior probability of two or more classes are approxi-
mately equal. We are motivated to address the challenge of class
overlap in the presence of imbalanced classes by a problem
in pervasive computing. Specifically, we are designing smart
environments that perform health monitoring and assistance. Our
solution, ClusBUS, is a clustering-based undersampling technique
that identifies data regions where minority class samples are
embedded deep inside majority class. By removing majority
class samples from these regions, ClusBUS preprocesses the
data in order to give more importance to the minority class
during classification. Experiments show that ClusBUS achieves
improved performance over an existing method for handling class
imbalance.

Keywords—Class imbalance; overlapping classes; sampling;
automated prompting.

I. INTRODUCTION

As machine learning techniques mature and are used to
tackle scientific problems, a variety of challenges arise due to
the nature of the underlying data. A well-recognized challenge
that has attracted growing attention from both academia and
industry is the class imbalance problem. The class imbalance
problem is concerned with the performance of machine learn-
ing classifiers when one or more target classes (the minority
class(es)) is under-represented in comparison with the other
classes (the majority class(es)). This problem exists in many
problem domains such as cancerous cell identification [1], oil-
spill detection [2], fraud detection [3], keyword extraction [4],
and text classification [5], where identifying members of the
minority class is critical, sometimes more so than achieving
optimal overall accuracy for the majority class. In spite of
making progress in this area, researchers are facing new
emerging challenges that make the problem harder to solve
with existing techniques. One such niche yet critical problem
is class overlap in which data samples appear as valid examples
of more than one class. This situation occurs widely in char-
acter recognition [6] and drug design [7], where data samples
from different classes have very similar characteristics. The
minor differences that are present between the samples of two
different classes are usually difficult to capture using only data
attributes proposed by the domain experts. As a result, there is

a growing need to deal with this issue algorithmically. We are
motivated to pursue the challenge of handling data with class
overlap in the presence of imbalanced classes by a problem
in pervasive computing. Specifically, we are designing smart
environments that perform health monitoring and assistance.

The world’s population is aging, with the estimated number
of individuals over the age of 85 expected to triple by 2050
[8]. Currently, 50% of adults aged 85+ need assistance with
everyday activities, with one in three households anticipated
to have at least one family member with cognitive decline
within the next decade [9]. Because more individuals are living
longer with chronic diseases (e.g., Alzheimers disease, heart
disease, osteoporosis) there will be an emerging shortage in
the care workforce. Therefore, we must consider innovative
health care options if we are to provide quality care to our
aging population. Moreover, with proactive health care and
real-time intervention, we can reduce caregiver burden.

Studies have shown that smart environment technologies
can detect errors in activity completion and might be utilized
to extend independent living in one’s own home without
compromising safety [10], [11]. One type of intervention that
is valuable for individuals with cognitive impairment is auto-
mated prompts that aid with activity initiation and completion.
To date, most applications of the smart environment technology
for intervention have relied upon partial or full expert design
of prompting rules [12], [13]. Our approach to automating
prompting-based intervention for activity completion is to
emulate the timing of caregiver prompts while an individual
performed everyday activities. To automate prompt timing,
we are designing machine learning algorithms that use the
experimenter prompt delivery situations as ground truth for
determining whether a current sensor-based activity step is a
prompt or a no-prompt step.

To determine the ability of a machine learning algorithm
to generate appropriate activity-aware prompts, we performed
a study in our smart home testbed with healthy older adults
and individuals with mild cognitive impairment. While the
participants performed daily activities, an ambient sensor net-
work monitored motion, door open/shut status, and specific
item use throughout the testbed, and the experimenter issued a
prompt remotely via a tablet or a smart phone if the participant
faced difficulty in activity completion. The raw sensor data
collected from this study are converted into a machine readable
structured dataset (“prompting” data, as we would refer to it)
by adding temporal and spatial features/attributes to individual
activity steps. As there were very few situations when the par-

ticipants needed prompts, there are far fewer prompt samples
than no-prompt, and this makes the prompting data inherently
imbalanced. Moreover, the current sensor suite does not al-
low crisp differentiation of some prompt situations from no-
prompt. This causes ambiguity of class label for a significant
portion of prompting data. This study was primarily focused on
proposing a machine learning model that can predict prompt
situations in daily activities. Therefore, in this paper we do
not perform any analysis of the causal relationship between
cognitive health conditions (such as MCI and Alzheimer’s)
and the variance of prompt types. However, interested readers
can take a look at the study done by Dawadi et al. [14] on the
correlation of cognitive health and performing complex daily
tasks based on activity monitoring in smart homes.

As the accurate classification of prompt samples, which is
in the minority, is critically more important than identification
of no-prompt samples, which is in the majority, we propose
a solution that addresses both class imbalance and overlap.
Our solution ClusBUS, is a clustering-based undersampling
technique, that identifies data regions where minority class
(prompt) samples are embedded deep inside majority class
samples. By removing majority class samples from these
regions, ClusBUS preprocesses the data in order to give the
prompt class more importance during classification.

II. PROBLEM DEFINITION

Although, both the problems of class imbalance and over-
lap can exists in data with multiple classes, due to a general
consensus in the literature [1], [2], [3] and our current appli-
cation objective, in this paper we deal with data that has one
minority and one majority class. A widely accepted rule of
thumb is: any dataset that contains less than ∼ 10% minority
class samples is considered to be imbalanced. Because the goal
of supervised learning algorithms is to optimize prediction
accuracy for the entire set of available data points, most
approaches ignore performance on the individual class labels.
As a result, the highest-performing algorithm will label all
points from an imbalanced dataset as members of the majority
class despite the fact that all of the minority class samples
are incorrectly classified. On the contrary, in many real-life
problems accurate classification of minority class samples is
critically important. For example, in the mammography dataset
where the minority class represents cancerous and majority
class represents healthy, a biased prediction would result in
the prediction of cancerous patients being healthy. Credit card
fraud detection and network security threat detection are some
of the other examples where this kind of prediction is not
desirable.

The class overlap [15] occurs when there are ambiguous
regions in the data where the prior probability for both classes
is approximately equal. This makes it difficult or impossible
to distinguish between the two classes, primarily because it is
difficult to make a principled choice of where to place the class
boundary in this region since it is expected that the accuracy
would be equal to the proportion of the volume assigned
to each class. Figure 1 visually illustrates the difference
between normal data with a crisp class boundary and data with
class overlap. The combination of imbalanced and overlapping
classes makes the resultant problem more difficult than solving
them independently.

Fig. 1. (left) Data without class overlap, (right) Data with class overlap

Experiments with human participants in our smart home
testbed show that there are certain prompt situations where
the sensor triggering signature is quite similar to the situations
when the participant would probably need no prompt. This
kind of situation is prevalent in daily activities that involve
object interactions. As our current infrastructure does not have
dedicated sensors to track object usage, it is difficult to gauge
from the raw sensor data if the participant actually committed
an error in such activities. Thus, the absence of sufficient
data attributes to differentiate between prompt and no-prompt
classes causes class overlap. Our claim is verified by plotting
the prompting data in a 3-dimensional space using Principal
Component Analysis for dimensionality reduction, which is a
well-known technique of data visualization. Figure 2 shows
that the minority class samples are highly embedded in the
majority class, thus making them inseparable if fed as is to
the classifiers. Moreover, due to infrastructural limitations, it
is not possible to add new differentiating features to the current
dataset, leaving us with the only option of addressing the
problem algorithmically.

As a solution to the overlap problem, the literature pri-
marily talks about preprocessing the data before using it to
learn a classification model. Preprocessing data to address class
overlap is usually a two step process shown in Figure 3. The
first and most crucial step is to identify regions of overlap
in the data space. This is followed by handling samples in
the overlapping region by using methods that mainly fall into
three categories [16]: separating, merging and discarding. We
discuss these methods in the following section. The approach
taken in this paper also uses preprocessing by performing a

Fig. 2. 3D PCA plot for prompting data

Fig. 3. Steps taken to address class overlap

clustering-based undersampling of the overlapping region to
achieve a better learning model.

III. RELATED WORK

While there has not been a significant effort to address
class overlap in the presence of imbalanced classes, these two
problems have been studied substantially in isolation.

Learning from imbalanced class datasets is a niche, yet
critical area in supervised machine learning. Therefore, a
wide spectrum of related techniques have been proposed [17],
[18] for improved classification of minority class samples.
The most common approach is to resample or modify the
dataset in a way that balances the class distribution. Naive
resampling methods include oversampling the minority class
by duplicating existing data points and undersampling the
majority class by removing chosen data points. However,
random over-sampling and under-sampling increases the pos-
sibility of overfitting and discarding useful information from
the data, respectively. Therefore, techniques such as SMOTE
[19] and Borderline-SMOTE [20] employ intelligent ways
of oversampling to synthetically generate new minority class
samples in Euclidean space.

Similarly, the problem of overlapping classes or ambiguous
data has been studied for over a decade, particularly in the
areas of character recognition and document analysis [6], text
classification, credit card fraud detection, and drug design [7].
A major hindrance to deal with overlapping class data is the
identification of ambiguous or overlapping regions. Tang et al.
[21] proposed a k-Nearest Neighbor based approach to extract
ambiguous regions in the data. Visa et al. [22] performed
a fuzzy set representation of the concept and incorporated
overlap information in the fuzzy classifiers. In addition, Xiong
et al. [16] used the one-class classification algorithm Support
Vector Data Description (SVDD) to capture the overlapping
regions in real-life datasets.

Handling samples of overlapping regions is as important
as identifying such regions. Xiong et al. [16] proposed that
the overlapping regions can be handled with three different
schemes: discarding, merging and separating. The discarding
scheme ignores the overlapping region and learns on rest
of the data that belongs to the non-overlapping region. For
example, SMOTE + Tomek Links [23] is one such method.
The merging scheme considers the overlapping region as a
new class and uses a 2-tier classification model. The upper
tier classifier focuses on the entire dataset with an additional
class representing the overlapping region. If a test sample is
classified as belonging to the overlapping region, the lower
tier classifier which works only on the overlapping region is
used. For instance, Trappenberg et al. [24] proposed a scheme
that refers to the overlapping region class as IDK (I don’t
know) and predicts the class label of test data only when it

is first classified as IDK. The authors argue that by losing
prediction accuracy on IDK, a drastic increase in confidence
can be gained on the classification of the remaining data. In
the separating scheme, the data from overlapping and non-
overlapping regions are treated separately to build the learning
models. Tang et al. [21] proposes a multi-model classifier
named Dual Rough Support Vector Machine (DR-SVM) which
combines SVM and kNN under rough set technique. kNN is
used to extract boundary patterns or overlapping regions. Two
different SVMs are then trained for the overlapping and non-
overlapping regions.

There is systematic investigative work on handling class
overlap in the presence of imbalanced classes. Prati et al. [25],
[26] illustrated the cause of imbalanced class distribution pos-
ing a problem in the presence of high degree of class overlap.
They showed that overlap aggravates the problem of imbalance
and is sufficient to degrade the performance of the classifier on
its own. Garcia et al. [27] analyzed the effects of the combined
problems on instance-based classification scenario. On the
other hand, a category of data cleansing methods tackle the
problem by cleaning up unwanted overlapping between classes
by removing pairs of minimally distanced nearest neighbors
of opposite classes, popularly known as Tomek links [28].
SMOTE+ENN and SMOTE+Tomek [29] utilize the capability
of Tomek links to clean the data. However, the cleansing
techniques are not desirable for datasets that have inherent
class overlap or absolutely rare minority class samples that
can cause loss of highly informative data.

In this paper, we take a preprocessing approach similar to
the discarding scheme to deal with the overlapping classes.
Instead of designating the boundary samples as noise, our
approach considers them as crucial for decision making in
the overlapping region. The minority class points in the over-
lapping region are retained and the majority class points are
discarded to make a clear distinction.

IV. SMART HOME INFRASTRUCTURE

Our smart home infrastructure is used to replicate near ideal
day to day lives of individuals in their homes. The testbed
is a two-story apartment equipped with sensors that monitor
motion, door open/shut status, and usage of water, burner, and
specific items throughout the apartment. Figure 4 gives a high-
level understanding of our current infrastructure.

We performed a study in our smart home with 128 vol-
unteer participants, aged 50+, who are healthy older adults or
individuals with mild cognitive impairment. Clinically-trained
psychologists watch over a web camera as the participants
perform 8 different activities. On observing a participant facing
difficulty initiating or completing an activity, the psychology
experimenters remotely issue an audio/video prompt contain-
ing activity specific instructions via a tablet location nearest
to the participant or a smart phone. The prompt timings
are logged into the database along with the sensor events,
denoted by date, time, sensor identifier, and sensor status, that
are collected continuously. A human annotator annotates the
sensor events with corresponding activity and a sub-step that
act as the ground truth. Table I shows a snippet of annotated
sensor events. On the basis of ground truth information,
the feature vector for every activity sub-step present in the

Fig. 4. Smart Home System Architecture

database is generated that consists of temporal, spatial and
contextual features. We can view automated prompting as
a supervised learning problem in which each activity step
is mapped to a “prompt” or “no-prompt” class label. Thus,
automated prompting emulates natural interventions provided
by a caregiver.

TABLE I. HUMAN ANNOTATED SENSOR EVENTS

Date Time SensorID Status Annotation Prompt
2009-05-11 14:59:54 D010 CLOSE cook-3 prompt
2009-05-11 14:59:55 M017 ON cook-4 no-prompt
2009-05-11 15:00:02 M017 OFF none no-prompt
2009-05-11 15:00:17 M017 ON cook-8 no-prompt
2009-05-11 15:00:34 M018 ON cook-8 no-prompt
2009-05-11 15:00:35 M051 ON cook-8 no-prompt
2009-05-11 15:00:43 M016 ON cook-8 no-prompt
2009-05-11 15:00:43 M015 ON cook-9 no-prompt
2009-05-11 15:00:45 M014 ON cook-9 no-prompt

V. DATA REPRESENTATION

A very crucial step in making sense of raw sensor data is in
understanding its hidden patterns. In order to do so, appropriate
attributes (or features) of the raw data should be exposed
to the machine learning algorithms to make accurate and
desired classification. We use annotated sensor data to generate
relevant and distinguishable temporal and spatial features of
the activity steps. Thus, each step of an activity is treated as a
separate training sample and pertinent features are defined to
describe the step. The annotations are also used to describe if
an activity step received a prompt by tagging the data sample
corresponding to the step with a “prompt” or “no-prompt” class
label. The features used in the current study are summarized in
Table II. Machine learning classifiers are applied on the refined
dataset to predict if a sample, which is an abstraction of an
activity step, belongs to the “prompt” or “no-prompt” class.

The sensor data1 collected from 128 participants of our
study is used to train classification models. Out of 53 pre-
defined activity steps, 38 are recognizable from the raw data
by the human annotators. The rest of the activity steps are
unrecognizable due to their close association with specific
object interactions that could not be tracked by the current
sensor infrastructure. In our study, participants were issued

1Available at: http://ailab.wsu.edu/casas/datasets/prompting.zip

TABLE II. GENERATED FEATURES

Feature Description
stepLength Length of activity step in seconds
numSensors Number of unique sensors involves with the step
numEvents Number of sensor events associated with the step
prevStep Previous step ID
nextStep Next step ID

timeActBegin Time (seconds) elapsed since the beginning of the activity
timePrevAct Time (seconds) difference between the last event of the

previous step and first event of the current step
stepsActBegin Number of steps visited since the beginning of the activity

activityID Activity ID
stepID Current step ID

location A set of features representing sensor frequencies in various
regions (such as kitchen, dining room, living room, etc.) of
a smart home when the current activity step was performed

Class Binary class attribute representing prompt and no-prompt

prompts in 149 different cases which involved any of the 38
recognizable activity steps. Therefore, approximately 3.74% of
the prompting data belongs to the prompt class and the rest
to the no-prompt class. Out of the data samples belonging
to the prompt class, approximately 60% belong to the over-
lapping region. The primary contribution of this work is the
development of an intelligent data preprocessing technique that
handles imbalanced prompting data containing class overlap as
well.

VI. CLUSBUS: CLUSTERING-BASED UNDER-SAMPLING

Class imbalance and overlap are strongly coupled with each
other when it comes to learning from class imbalanced data.
Denil et al. proved [30] this by performing hypothesis tests.
They also showed that if overlap and imbalance levels are
too high, good performance cannot be achieved regardless of
the amount of available training data. We hypothesize that by
addressing the overlap problem, we would be able to get rid
of the detrimental effects of class imbalance to some extent.
Therefore, we employ a Clustering-Based Under-Sampling
(ClusBUS) technique to get rid of the overlapping classes.

The idea of devising this technique is derived from the use
of Tomek links [28] combined with other sampling methods
such as Condensed Nearest Neighbor [31] and SMOTE [29].
Given two data samples Ei and Ej belonging to different
classes, and d(Ei, Ej) being the distance between Ei and Ej ,
a (Ei, Ej) pair is called a Tomek link if there is no sample
Ek such that d(Ei, Ek) < d(Ei, Ej). Quite naturally, if two
samples form a Tomek link, then either one of these samples
is noise or both samples are on or near the class boundary.
Tomek links are used both as a data cleansing method by
removing samples of both classes, and as an under-sampling
method by eliminating only majority class samples from the
links. For instance, One-sided selection (OSS) [32] is an under-
sampling method that applies Tomek links followed by the
application of Condensed Nearest Neighbor (CNN). In this
method, Tomek links are used to remove noisy and borderline
majority class samples. As a small amount of noise can make
the borderline samples fall on the wrong side of the decision
boundary, borderline samples are considered unsafe. CNN is
used to remove samples from the majority class that are far
away from the decision boundary. The rest of the majority and
minority class samples are used for the purpose of learning.
As opposed to using Tomek links in OSS to find minimally-
distant nearest neighbor pairs of opposite class samples and

Algorithm 1: ClusBUS
1: Let S be the original training set.
2: Form clusters on S denoted by Ci such that 1 < i < |C|.
3: Find the degree of minority class dominance for all Ci by:

ri =
minority class samples in Ci

|Ci|
4: For clusters that satisfy 0 < ri < 1 and r ≥ τ (where, τ = f(r)

is an empirically determined threshold for r and is uniform over
all the clusters), remove all the majority class samples and retain
the minority class samples.

Fig. 5. ClusBUS Algorithm

then removing majority class samples, we find clusters which
have a good mix of minority and majority class samples.
A good mix is determined by the degree of minority class
dominance in each cluster. The majority class samples from
these clusters are then removed.

First, the entire training data is clustered ignoring the class
attribute using Euclidean distance as the distance measure. The
degree of minority class dominance of each cluster, denoted
by r, is calculated as the ratio of number of minority class
samples to the size of the cluster. Therefore, r = 0 indicates
that all the samples of the cluster belong to the majority
class, and r = 1 indicate that all the samples belong to the
minority class. For clusters with 0 ≤ r ≤ 1, the majority
class samples are removed if r is equal to or greater that an
empirically determined threshold τ . Clearly, if the τ is low,
more majority class examples would be removed as compared
to when τ is high. This method creates a “vacuum” around
the minority class samples in each cluster and thus helps the
machine learning classifiers learn the decision boundary more
efficiently. The ClusBUS algorithm is summarized in Figure
5.

Theoretically, there is no restriction on the choice of
clustering algorithm that should be used to identify clusters
containing samples from both classes. However, we avoid
any form of partitioning-based clustering method in our ex-
periments for a couple of reasons. Firstly, partitioning-based
clustering requires user intervention to specify the number
of clusters that need to be formed from the data. Secondly,
these methods form spherical clusters only, which might not
be the ideal cluster shape in many datasets. Therefore, in this
study, we use a density-based clustering algorithm, namely,
Density-Based Spatial Clustering of Applications with Noise
or DBSCAN [33], [34]. DBSCAN forms arbitrary shapes
of clusters in the data that are not necessarily spherical
(Gaussian). Moreover, as we do not make any assumption on
the distribution of the data, the notion of density on which
DBSCAN is based is more meaningful than specifying the
number of clusters and forcing the data to be partitioned
accordingly. In the following, we provide a brief background
description of DBSCAN.

DBSCAN is a density based clustering technique that treats
clusters as dense regions of objects in the data space that are
separated by regions of low density, mostly representing noise.
An object that is not contained in any cluster is considered
as noise. In other words, DBSCAN defines a cluster as a
maximal set of density-connected points. The neighborhood
of an object or data point is defined by a parameter ε. If the
ε-neighborhood of a data point contains at least a minimum

Algorithm 2: DBSCAN
1: Search for clusters by checking ε-neighborhood of each point.
2: If ε-neighborhood of a point p contains more than MinPts, a new

cluster with p as core point is created.
3: Iterate collection of directly density-reachable points from the

core points.
4: Terminate when no new point can be added to any cluster.

Fig. 6. DBSCAN Algorithm

number of other points denoted by MinPts, then the point is
called a core point, and the ε-neighboring points are directly
density-reachable from the core point. A point p is density-
reachable from point q with respect to ε and MinPts, if there
is a chain of objects p1, . . . , pn, where p1 = q and pn = p such
that pi+1 is directly density-reachable from pi with respect to
ε and MinPts. In a similar way, a point p is density-connected
to q if there is a point o in the same data space such that both
p and q are density-reachable from o with respect to ε and
MinPts. The algorithm is summarized in Figure 6.

The degree of minority class dominance is a very crucial
factor for the selection of candidate clusters to perform under-
sampling. An appropriate choice of threshold τ could directly
affect the performance of the classifiers. We take an empirical
approach (described in the following section) to determine τ
by choosing a value between min and median of r.

VII. EXPERIMENTS AND RESULTS

We use four commonly known machine learning classifiers
to perform our experiments and thus validate the effectiveness
of our proposed data preprocessing approach: C4.5 decision
tree (C4.5), k-nearest neighbor (kNN), naive Bayes classifier
(NBC) and a Sequential Minimal Optimization version of
support vector machines (SVM). We perform a 5-fold cross
validation on the data where the training and test data in each
fold retains the ratio of class imbalance and overlap, and the
training data is preprocessed using ClusBUS.

Unlike most classification scenarios, classification perfor-
mance for imbalanced and overlapping datasets cannot be
evaluated using conventional performance measures such as
accuracy and error rate. For instance, a random algorithm
that classifies all the samples in the prompting data as no-
prompt class would yield 96% accuracy (∼3.94% of the
data belongs to the prompt class), although all predictions
for prompt samples are incorrect. Therefore, it is critical to
evaluate the classifiers with performance metrics that capture
classification performance for both classes. We report the True
Positive (TP) rate (prompt class being the positive class) that
represents the ratio of activity steps that are correctly classified
as requiring a prompt, and the False Positive (FP) rate that
represents the ratio of no-prompt steps that are classified as
prompt steps. The TP rate is thus capable of measuring the
performance of the classifiers separately for the prompt class.
An ROC curve plots a classifier’s FP rate on the x-axis and
the TP rate on the y-axis. Thus it illustrates the classifier’s
performance without taking into account class distribution
or error cost. We report area under the ROC curve (AUC)
to evaluate the performance over the costs and distributions.
We also report the geometric mean of true positive and true
negative rates (G-mean =

√
TPRate× TNRate) to measure

the effectiveness of a classifier on both of the classes together.
In the current application, false positives are more acceptable
than false negatives. While a prompt that is delivered when it
is not needed is a nuisance, that type of mistake is less costly
than not delivering a prompt when one is needed, particularly
for individuals with dementia. However, considering that the
purpose of this research is to assist people by delivering fewer
number of prompts, there should be a trade-off between the
correctness of predicting a prompt step and the total accuracy
of the entire system.

Due to the unavailability of any implementation of ap-
proaches that provide a unified solution to address class imbal-
ance and overlap, we compare the performance of ClusBUS
with a well-known oversampling technique, known as known
as SMOTE [19]. SMOTE oversamples the minority class by
creating “synthetic” samples based on spatial location of the
samples in the Euclidean space. Oversampling is performed
by considering each minority class sample and introducing
synthetic examples along the line segments joining any or
all of the k-minority class nearest neighbors. The k-nearest
neighbors are randomly chosen depending upon the amount of
oversampling that is required. Synthetic samples are generated
in the following way: First, the difference between the minority
class sample under consideration and its nearest neighbor is
computed. This difference is multiplied by a random num-
ber between 0 and 1, and it is added to the sample under
consideration. This results in the selection of a random point
in the Euclidean space, along the line segment joining two
specific data samples. Consequently, by adding diversity to
the minority class, this approach forces the decision boundary
between the two regions to be crispier. However, SMOTE does
not guarantee that the generated samples would belong to the
minority class, especially when the samples from the majority
and minority classes overlap. We use SMOTE to produce
a 50:50 distribution of minority and majority class samples,
which is considered near optimum [35].

As mentioned in the previous section, candidate clusters
for undersampling are chosen on the basis of an empirically
determined threshold τ on the degree of minority class domi-
nance r. In order to determine τ , we assume real values of
r as q-quantile ordered data. Quantiles are points taken at
regular intervals from the cumulative distribution function of a
random variable which in our case is r. Dividing ordered data
into q essentially equal-sized data subsets is the motivation
for q-quantiles. We vary τ from the boundary values of first
quantiles for q-quantile values of r where 2 < q < 10. Based
on these threshold values, we preprocess the prompting data
using ClusBUS and feed it to a C4.5 decision tree classifier.
The plots for TP rate, FP rate and AUC obtained by applying
C4.5 on prompting data using different values of τ are shown
in Figure 7. A uniform trend in the performance measures
indicate that there is no further improvement of a classifier
after 1st quantile boundary value of a 4-quantile model of
ordered r values. Therefore, further experiments with other
classifiers are performed with τ = 0.25.

We compare the performance of the four classifiers on the
prompting data using the following preprocessing techniques:
(a) no preprocessing (represented as Original in the plots),
(b) SMOTE, and (c) ClusBUS. The performance results are
plotted in Figure 8. It is quite clear from the figure that

Fig. 7. TP Rate, FP Rate and AUC obtained from C4.5 for different 1st
quantile boundary values of q-quantile r values

all four classifiers perform better when preprocessed using
ClusBUS than with no preprocessing or when preprocessed
by SMOTE. TP rate and G-means show statistically signif-
icant improvement over Original and SMOTE (p < 0.05).
An interesting thing to note is that the improvement varies
across different classifiers which can be attributed to the
underlying principle of the classifiers and how SMOTE and
ClusBUS effect those principles. For example, the performance
of SMOTE is worse when used with C4.5 and kNN than
when used with SVM. This is because SVM uses a kernel
function that helps in separating overlapping classes to some
extent. The consistent improvement of ClusBUS across all four
classifiers is a strong evidence that it can be used as a reliable
preprocessing techniques irrespective of the classifier.

ClusBUS results in better AUC over Original for all classi-
fiers except NBC. However, there is no notable improvement in
AUC when compared with SMOTE. This is because ClusBUS
induces minor increase in FP rate. ROC curves are plotted
as FP rate versus TP rate. Therefore, a minor increase in FP
rate can cause the curve to deviate away from the top-left
corner which is the ideal target for any classifier. Although
this can be considered as the only limitation of ClusBUS
from a theoretical perspective, it is found in the literature
that most sampling techniques often cause increase in FP rate.
However, the minor increase in FP rate does not demean the
advantages and improvement of ClusBUS on other methods.
This is because ClusBUS does not entail any costly data syn-
thesis technique like SMOTE, but performs undersampling of
majority class training samples that belong to the overlapping
region. Moreover, from our application perspective achieving
a low FP rate does not justify classifying prompt situations as
no-prompt.

VIII. CONCLUSION

This paper proposes ClusBUS, a preprocessing technique to
deal with class overlap problem in the presence of imbalanced
classes in data. The proposed method helps us in better
identification of potential prompt situations in daily human
activities performed in smart homes. The effectiveness of
ClusBUS is established by an improved performance over a
widely known technique to handle class imbalance, SMOTE.
We plan to further test our approach on datasets from other
problem domains such as network intrusion detection, credit
card fraud detection, etc. We will also compare our approach
with other unified solutions that address class imbalance and
overlap such as SMOTE+ENN and SMOTE+Tomek.

Fig. 8. Comparison of performance measures: (top-left) TP Rate, (top-right) FP Rate, (bottom-left) AUC, and (bottom-right) G-means

REFERENCES

[1] K. Woods, C. Doss, K. Bowyer, J. Solka, C. Priebe, and K. W., “Com-
parative evaluation of pattern recognition techniques for detection of
microcalcifications in mammography,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 7, no. 6, pp. 1417–1436,
1993.

[2] M. Kubat, R. Holte, and S. Matwin, “Machine learning for the detection
of oil spills in satellite radar images,” Machine learning, vol. 30, no. 2,
pp. 195–215, 1998.

[3] C. Phua, D. Alahakoon, and V. Lee, “Minority report in fraud detection:
classification of skewed data,” ACM SIGKDD Explorations Newsletter,
vol. 6, no. 1, pp. 50–59, 2004.

[4] P. Turney et al., “Learning algorithms for keyphrase extraction,” Infor-
mation Retrieval, vol. 2, no. 4, pp. 303–336, 2000.

[5] D. Lewis and W. Gale, “A sequential algorithm for training text
classifiers,” in Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.
Springer-Verlag New York, Inc., 1994, pp. 3–12.

[6] C. Liu, “Partial discriminative training for classification of overlapping
classes in document analysis,” International Journal on Document
Analysis and Recognition, vol. 11, no. 2, pp. 53–65, 2008.

[7] S. Andrews, Learning from ambiguous examples, 2007, vol. 68, no. 07.
[8] G. K. Vincent and V. A. Velkoff, The next four decades: The older

population in the United States: 2010 to 2050. US Department
of Commerce, Economics and Statistics Administration, US Census
Bureau, 2010, no. 1138.

[9] A. Association, “2013 alzheimer’s disease facts and figures.”
Alzheimer’s & Dementia, vol. 9, no. 2, 2013.

[10] D. Cook, M. Schmitter-Edgecombe et al., “Assessing the quality of
activities in a smart environment,” Methods of Information in Medicine,
vol. 48, no. 5, p. 480, 2010.

[11] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-
based approach for realizing ambient intelligence in intelligent inhabited
environments,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 35, no. 1, pp. 55–65, 2005.

[12] M. Pollack, L. Brown, D. Colbry, C. McCarthy, C. Orosz, B. Peintner,
S. Ramakrishnan, and I. Tsamardinos, “Autominder: An intelligent cog-
nitive orthotic system for people with memory impairment,” Robotics
and Autonomous Systems, vol. 44, no. 3-4, pp. 273–282, 2003.

[13] H.-H. Hsu, C.-N. Lee, and Y.-F. Chen, “An rfid-based reminder system
for smart home,” in Advanced Information Networking and Applications
(AINA), 2011 IEEE International Conference on. IEEE, 2011, pp. 264–
269.

[14] P. N. Dawadi, D. J. Cook, and M. Schmitter-Edgecombe, “Automated
cognitive health assessment using smart home monitoring of complex
tasks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2013.

[15] M. Denil, “The effects of overlap and imbalance on svm classification,”
Ph.D. dissertation, Dalhousie University, 2010.

[16] H. Xiong, J. Wu, and L. Liu, “Classification with class overlapping: A
systematic study.”

[17] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–
1284, 2009.

[18] N. Chawla, “Data mining for imbalanced datasets: An overview,” Data
Mining and Knowledge Discovery Handbook, pp. 875–886, 2010.

[19] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: syn-
thetic minority over-sampling technique,” Journal of Artificial Intelli-
gence Research, vol. 16, pp. 321–357, June 2002.

[20] H. Han, W. Wang, and B. Mao, “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,” Advances in Intel-
ligent Computing, pp. 878–887, 2005.

[21] Y. Tang and J. Gao, “Improved classification for problem involving
overlapping patterns,” IEICE Transactions on Information and Systems,
vol. 90, no. 11, pp. 1787–1795, 2007.

[22] S. Visa and A. Ralescu, “Learning imbalanced and overlapping classes
using fuzzy sets,” in Proceedings of the ICML, vol. 3, 2003.

[23] G. Batista, A. Bazan, and M. Monard, “Balancing training data for
automated annotation of keywords: a case study,” in Proceedings of the
Second Brazilian Workshop on Bioinformatics, 2003, pp. 35–43.

[24] T. Trappenberg and A. Back, “A classification scheme for applications
with ambiguous data,” in Neural Networks, 2000. IJCNN 2000, Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on,
vol. 6. IEEE, 2000, pp. 296–301.

[25] R. Prati, G. Batista, and M. Monard, “Class imbalances versus class
overlapping: an analysis of a learning system behavior,” MICAI 2004:
Advances in Artificial Intelligence, pp. 312–321, 2004.

[26] G. Batista, R. Prati, and M. Monard, “Balancing strategies and class
overlapping,” Advances in Intelligent Data Analysis VI, pp. 741–741,
2005.

[27] V. Garcı́a, R. Alejo, J. Sánchez, J. Sotoca, and R. Mollineda, “Combined
effects of class imbalance and class overlap on instance-based classifi-
cation,” Intelligent Data Engineering and Automated Learning–IDEAL
2006, pp. 371–378, 2006.

[28] I. Tomek, “Two modifications of CNN,” IEEE Transaction on Systems,
Man and Cybernetics, vol. 6, pp. 769–772, 1976.

[29] G. Batista, R. Prati, and M. Monard, “A study of the behavior of several
methods for balancing machine learning training data,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[30] M. Denil and T. Trappenberg, “Overlap versus imbalance,” Advances
in Artificial Intelligence, pp. 220–231, 2010.

[31] P. Hart, “The condensed nearest neighbor rule,” IEEE Transaction on
Information Theory, vol. 3, pp. 515–516, 1968.

[32] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: one-sided selection,” in Machine Learning-International Workshop
then Conference. Morgan Kaufmann Publishers, Inc., 1997, pp. 179–
186.

[33] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data mining, vol. 1996. AAAI Press, 1996, pp. 226–231.

[34] J. Han and M. Kamber, Data mining: concepts and techniques. Morgan
Kaufmann, 2006.

[35] G. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal of Artificial
Intelligence Research (JAIR), vol. 19, pp. 315–354, 2003.

