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Activity Recognition o

v'Aging in place.

v'"Remote health monitoring.
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exercising hand washing
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Our Endeavor:
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Proposed Architecture
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Activity Types

e Sitting
e Standing
e Walking

e Running
Climbing stairs
Lying
Biking
Driving
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e Cleaning

e Cooking

e Medication

e Sweeping

e Washing hands
e Watering plants
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Experimental Setup

v Device: Samsung Captivate™

v’ Operating System: Android 2.1 Froyo

v" Sensors used: Accelerometer and gyroscope
v’ Sampling Rate: 30 Hz

v’ # Participants: 10

v Machine Learning Algorithms:

*Multillayer Perceptron
*Naive Bayes

*Bayes Net

*Decision Table
*Best-First Tree

*K-star
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Results: Accuracy
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Figure: Performance of Different Classifiers
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Figure: Classification Accuracies for K-star with Different Window Length.
Und corresponds to the scenario when sliding window is not used
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Results: Orientation Data

B With Orientation M Without Orientation

Accuracy

Simple All Complex
Activity Set

Figure: Accuracy of K-star with and without using orientation information
from gyroscope
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Conclusion

* Simple activities recognized very accurately.
* Accuracy for complex activities not to high.

* However, indicates potential usage of phone sensor data.
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