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ABSTRACT 
In smart home environment research, little attention has been 
given to monitoring, analyzing, and predicting energy usage, 
despite the fact that electricity consumption in homes has grown 
dramatically in the last few decades. We envision that a potential 
application of this smart environment technology is predicting the 
energy would be used to support specific daily activities. The 
purpose of this paper is thus to validate our hypothesis that energy 
usage can be predicted based on sensor data that can be collected 
and generated by the residents in a smart home environment, 
including recognized activities, resident movement in the space, 
and frequency of classes of sensor. In this paper, we extract useful 
features from sensor data collected in a smart home environment 
and utilize several machine learning algorithms to predict energy 
usage given these features. To validate these algorithms, we use 
real sensor data collected in our CASAS smart apartment testbed.  
We also compare the performance between different learning 
algorithms and analyze the prediction results for two different 
experiments performed in the smart home.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining; I.2.6 [Artificial Intelligent]: Learning – knowledge 
acquisition; H.4.m [Information Systems]: Information system 
Application – Miscellaneous. 

General Terms 
Algorithms, Performance, Experimentation, Human Factors. 

Keywords 
Energy Prediction, Smart Environments, Machine Learning. 

 

1. INTRODUCTION 
Recently, smart home environments have become a very popular 
topic, due to a convergence of technologies in machine learning 
and data mining as well as the development of robust sensors and 
actuators. In this research, attention has been directed toward the 
area of health monitoring and activity recognition. Georgia Tech 
Aware Home [2] identifies people based on the pressure sensors 

embedded into the smart floor in strategic locations. This sensor 
system can be used for tracking inhabitant and identifying user’s 
location. The Neural Network House [3] designs an ACHE system, 
which provides an Adaptive Control of Home Environment, in 
which the home is proactive to program itself with the lifestyle 
and desires of the inhabitant. The smart hospital project [4] 
develops a robust approach for recognizing user’s activities and 
estimating hospital-staff activities using a hidden Markov model 
with contextual information in the smart hospital environment. 
MIT researchers [5] recognize user' s activities by using a set of 
small and simple state-change sensors, which are easy and quick 
to install in the home environment. Unlike one resident system, 
this system is employed in multiple inhabitant environments and 
can be used to recognize Activities of Daily Living (ADL). 
CASAS Smart Home Project [6] builds probabilistic models of 
activities and used them to recognize activities in complex 
situations where multiple residents are performing activities in 
parallel in the same environment.  

Based on a recent report [7], buildings are responsible for at 
least 40% of energy use in most countries. As an important part of 
buildings, household consumption of electricity has been growing 
dramatically. Thus, the need to develop technologies that improve 
energy efficiency and monitor the energy usage of the devices in 
household is emerging as a critical research area. The BeAware 
project [8] makes use of an iPhone application to give users alerts 
and to provide information on the energy consumption of the 
entire house. This mobile application can detect the electricity 
consumption of different devices and notify the user if the devices 
use more energy than expected. The PowerLine Positioning (PLP) 
indoor location system [9] is able to localize to sub-room level 
precision by using fingerprinting of the amplitude of tones 
produced by two modules installed in extreme locations of the 
home. Later work of this system [10] records and analyzes 
electrical noise on the power line caused by the switching of 
significant electrical loads by a single, plug-in module, which can 
connect to a personal computer, then uses machine learning 
techniques to identify unique occurrences of switching events by 
tracking the patterns of electrical noise. The MITes platform [11] 
monitors the changes of various appliances in current electricity 
flow for the appliance, such as a switch from on to off by 
installing the current sensors for each appliance. Other similar 
work [12] also proposes several approaches to recognize the 
energy usage of electrical devices by the analysis of power line 
current. It can detect whether the appliance is used and how it is 
used.  

In our study, we extend smart home research to consider the 
resident's energy usage. We envision three applications of smart 
environments technologies for environmental energy efficiency: 
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1) analyzing electricity usage to identify trends and anomalies, 2) 
predicting the energy that will be used to support specific daily 
activities, and 3) automating activity support in a more energy-
efficient manner.  In this paper, we focus on the second task. The 
purpose of this paper is thus to validate our hypothesis that energy 
usage can be predicted based on sensor data that can be collected 
and generated by the residents in a smart home environment, 
including automatically-recognized activities, resident movement 
in the space, and frequency of classes of sensor events. The results 
of this work can be used to give residents feedback on energy 
consumption as it relates to various activities. Ultimately this 
information can also be used to suggest or automate activities in a 
more energy-efficient way. 

In section 2, we introduce our CASAS smart environment 
architecture and describe our data collection and annotation 
modules. Section 3 presents the relationship between the energy 
data and the activities and describes machine learning methods to 
predict energy usage. Section 4 summarizes the results of our 
experiments and compares the performance between different 
learning methods and different experimental parameters. 

2. CASAS SMART ENVIRONMENT 
The smart home environment testbed that we are using to predict 
energy usage is a three bedroom apartment located on the 
Washington State University campus.  

 

Figure 1. Three-bedroom smart apartment used for our data 
collection (motion (M), temperature (T), water (W), burner 
(B), telephone (P),and item (I)). 

 

As shown in Figure 1, the smart home apartment testbed consists 
of three bedrooms, one bathroom, a kitchen, and a living/dining 
room. To track people’s mobility, we use motion sensors placed 
on the ceilings. The circles in the figure stand for the positions of 
motion sensors. They facilitate tracking the residents who are 
moving through the space. In addition, the testbed also includes 
temperature sensors as well as custom-built analog sensors to 
provide temperature readings and hot water, cold water and stove 
burner use. A power meter records the amount of instantaneous 
power usage and the total amount of power which is  used. An in-
house sensor network captures all sensor events and stores them in 
a SQL database. The sensor data gathered for our study is 
expressed by several features, summarized in Table 1. These four 

fields (Date, Time, Sensor, ID and Message) are generated by the 
CASAS data collection system automatically.  

Table 1. Sample of sensor events used for our study.  The first 
two events correspond to motion sensor ON and OFF 

messages.  The third event is an ambient temperature reading, 
and the last two events represent current electricity usage. 

Date Time Sensor ID Message 

2009-02-06 17:17:36 M45 ON 

2009-02-06 17:17:40 M45 OFF 

2009-02-06 11:13:26 T004 21.5 

2009-02-05 11:18:37 P001 747W 

2009-02-09 21:15:28 P001 1.929kWh 
 

To provide real training data for our machine learning 
algorithms, we collect data while two students in good health 
were living in the smart apartment. Our training data was gathered 
over a period of several months and more than 100,000 sensor 
events were generated for our dataset. Each student had a separate 
bedroom and shared the downstairs living areas in the smart 
apartment. All of our experimental data are produced by these two 
students’ normal lives, which guarantee that the results of this 
analysis are real and useful. 

After collecting data from the CASAS smart apartment, we 
annotated the sensor events with the corresponding activities that 
were being performed while the sensor events were generated. 
Because the annotated data is used to train the machine learning 
algorithms, the quality of the annotated data is very important for 
the performance of the learning algorithms. As a large number of 
sensor data events  are generated in a smart home environment, it  
becomes difficult for researchers and users to interpret raw data 
into residents' activities [13] without the use of visualization tools. 

To improve the quality of the annotated data, we built an 
open source Python Visualizer, called PyViz, to visualize the 
sensor events. Figure 2 shows the user interface of PyViz for the 
CASAS project. PyViz can display events in real-time or in 
playback mode from a captured file of sensor event readings. 
Furthermore, we also built an Annotation Visualizer to visualize 
the resident’s activities as shown in Figure 3. 

 

 
Figure 2. PyViz visualizer. 



 
Figure 3. Visualizing activities in a smart home environment. 

 

With the help of PyViz, activity labels are optionally added to 
each sensor event, providing a label for the current activity. For 
our experiment, we selected six activities that the two volunteer 
participants regularly perform in the smart apartment to predict 
energy use. These activities are as follows: 

1. Work at computer  

2. Sleep 

3. Cook 

4. Watch TV 

5. Shower 

6. Groom 

All of the activities that the participants perform have some 
relationship with measurable features such as the time of day, the 
participants’ movement patterns throughout the space, and the 
on/off status of various electrical appliances. These activities are 
either directly or indirectly associated with a number of electrical 
appliances and thus have a unique pattern of power consumption. 
Table 2 gives a list of appliances associated with each activity. It 
should be noted that, there are some appliances which are in 
“always on” mode, such as the heater (in winter), refrigerator, 
phone charger, etc. Thus, we postulate that the activities will have 
a measurable relationship with the energy usage of these 
appliances as well. 

 

Table 2.Electricical appliances associated with each activity. 

 
Activity 

Appliances 
Directly 

Associated 

Appliances 
Indirectly  
Associated 

Work at computer Computer, printer  Localized lights 
Sleep None None 
Cook Microwave, oven, 

stove 
Kitchen lights 

Watch TV TV, DVD player Localized lights 
Shower Water heater  Localized lights 
Groom Blow drier Localized lights 

 

 

3. ENERGY ANALYSIS  
 

 
Figure 4. Energy usage for a single day. 

 

Figure 4 shows the energy fluctuation that occurred during a 
single day on June 2nd, 2009. The activities have been 
represented by red arrows. The length of the arrows indicates the 
duration of time (not to scale) for different activities. Note that 
there are a number of peaks in the graph even though these peaks 
do not always directly correspond to a known activity. These 
peaks are due to the water heater, which has the highest energy 
consumption among all appliances, even though it was not used 
directly. The water heater starts heating by itself whenever the 
temperature of water falls below a certain threshold. 

 

 

 

 
Figure 5. Energy data curve fitting for each activity.  

(X-axis: wattage; Y-axis: second; A: Shower; B: Cook; C: 
Work on computer; D: Groom; E: Sleep; F: Watch TV) 

A B

C D

E F



Figure 5 plots typical energy data for each activity together with 
the result of applying curve fitting to the data. Curve fitting [14] is 
the process of building a mathematical function model that can 
best fit to a series of data points. It serves as an aid for data 
visualization, to approximate the values when no data are 
available, and to express the relationships between different data 
points. From the figure, we see that each resident's activity 
generates different energy patterns. The "cook" activity consumes 
the highest energy because the participants may open the 
refrigerator and use the stove or microwave oven, which need a 
relatively high power. Meantime, when the participants were 
sleeping, the energy consumption was the lowest because most 
appliances were idle. 

3.1 Feature Extraction 
Data mining and machine learning techniques use enormous 
volumes of data to make appropriate predictions. Before making 
use of these learning algorithms, another important step is to 
extract useful features or attributes from the raw annotated data. 
We have considered some features that would be helpful in energy 
prediction. These features have been generated from the raw 
sensor data by our feature extraction module. The following is a 
listing of the resulting features that we used in our energy 
prediction experiments.  

1. Activity label 

2. Activity length (in seconds) 

3. Previous activity 

4. Next activity 

5. Number of kinds of motion sensors involved 

6. Total number of times of motion sensor events triggered 

7. Motion sensor M1…M51 (On/Off) 

Target Feature:  Total energy consumption range for an activity 
(in watts) 

Activity label gives the name of the activity performed. Activity 
length is the duration of time a particular activity takes from 
beginning to the end. Features 3 and 4 represent the preceding and 
the succeeding activities to the current activity. Feature 5 takes 
into account the total number of different unique sensors used. 
Features 6 keeps a record of total number of sensor events 
associated with an activity. Feature 7 is not just one feature, but a 
collection of 51 features each representing a single motion sensor. 
Each of these sensor data records the total number of times a 
motion sensor was fired.  

The input to the learning algorithm is a list of these seven features 
as computed for a particular activity that was performed.  The 
output of the learning algorithm is the amount of electricity that is 
predicted to be consumed while performing the activity. To 
address the goal of predicting energy usage, we discretize the 
energy readings using equal width binning. Equal width binning 
[15] is also widely used in data exploration, preparation, and 
mining. Both of these binning techniques have been used to 
preprocess continuous-valued attributes by creating a specified 
number of bins, or numeric ranges. These benchmarks can be used 
to evaluate other machine learning classifiers we use in our 
experiments. In this paper, we discretize the target average energy 
data into several interval sizes (two classes, three classes, four 

classes and five classes, six classes) to assess the performance of 
our experiments. 

3.2 Feature Selection 
During feature extraction, our algorithm generates a large number 
of features to describe a particular situation. However, some of 
these features are redundant or irrelevant, resulting in a drastic 
raise of computational complexity and classification errors [16]. 
Features are selected by a method called attribute subset selection 
which finds a minimum set of attributes such that the resulting 
probability distribution of the data classes is as close as possible 
to the original distribution obtained using all attributes. In this 
paper, we have used information gain [17] to create a 
classification model, which can measure how well a given 
attribute separate the training examples according to their target 
classification. The performance of each attribute is measured in 
terms of a parameter known as information gain. It is a measure 
based on entropy, a parameter used in information theory to 
characterize the purity of an arbitrary collection of examples. It is 
measured as: 

  ppppSEntropy 22 loglog)(  
where, ܵ is the set of data points, ܲା is number of data points that 
belong to one class (the positive class) and  ܲି is the number of 
data points that belong to the negative class. We adapt this 
measure to handle more than two classes for our experiments.  
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where, Values (A) is the set of all possible values for attribute A. 
Gain(S, A) measures how well a given attribute separates the 
training examples according to their target classification. By using 
information gain, we can determine which features are 
comparatively more important than others for the task of target 
classification. 

3.3 Energy Prediction 
Machine learning [18]  algorithms  are capable  to learn and 
recognize complex patterns and classify objects based on sensor 
data. In our study, we make use of four popular machine learning 
methods to represent and predict energy usage based on the 
features we selected: a Naïve Bayes Classifier, a Bayes Net 
Classifier, a Neural Network Classifier, and a Support Vector 
Machine. We test these four algorithms on the data collected in 
the CASAS smart home apartment testbed. 

3.3.1 Naïve Bayes Classifier 
A naïve Bayes Classifier [19] is a simple probabilistic classifier 
that assumes the presence of a particular feature of a class is 
unrelated to any other features. It applies Bayes’ theorem to learn 
a mapping from the features to a classification label. 

argmaxୣ౟אEPሺe୧|Fሻ ൌ
PሺF|e୧ሻPሺe୧ሻ

PሺFሻ
 

In this equation, E represents the energy class label and F stands 
for the features values we describe above. Pሺe୧ሻ is estimated by 
counting the frequency with which each target value e୧ occurs in 
the training data. Based on the simplifying assumption that feature 
values are independent given the target values, the probabilities of 
observing the features is the product of the probabilities for the 
individual features: 



P൫Fหe୨൯ ൌ ෑ Pሺf୧|e୨ሻ
୧

 

Despite its naïve design and over-simplified assumptions, the 
naïve Bayes classifier often works more effectively in many 
complex real world situations than other classifiers. It only 
requires a small amount of training data to estimate the parameters 
needed for classification. 
 

3.3.2 Bayes Net 
Bayes belief networks [20] belong to the family of probabilistic 
graphical models. They represent a set of conditional 
independence assumptions by a directed acyclic graph, whose 
nodes represent random variables and edges represent direct 
dependence among the variables and are drawn by arrows by the 
variable name. Unlike the naïve Bayes classifier, which assumes 
that the values of all the attributes are conditionally independent 
given the target value, Bayesian belief networks apply conditional 
independence assumptions only to the subset of the variables. 
They can be suitable for small and incomplete data sets and they 
incorporate knowledge from different sources. After the model is 
built, they can also provide fast responses to queries. 

3.3.3 Artificial Neural Network 
Artificial Neural Networks (ANNs) [21] are abstract 
computational models based on the organizational structure of the 
human brain. ANNs provide a general and robust method to learn 
a target function from input examples. The most common learning 
method for ANNs, called Backpropagation, which performs a 
gradient descent within the solution’s vector space to attempt to 
minimize the squared error between the network output values 
and the target values for these outputs. Although there is no 
guarantee that an ANN will find the global minimum and the 
learning procedure may be quite slow, ANNs can be applied to 
problems where the relationships are dynamic or non- linear and 
capture many kinds of relationships that may be difficult to model 
by other machine learning methods. In our experiment, we choose 
the Multilayer-Perceptron algorithm with Backpropagation to 
predict electricity usage. 

3.3.4 Support Vector Machine 
Super Vector Machines (SVMs) were first introduced in 1992 
[22]. This is a training algorithm for data classification, which 
maximizes the margin between the training examples and the 
class boundary. The SVM learns a hyperplane which separates 
instances from multiple activity classes with maximum margin. 
Each training data instance should contain one class label and 
several features. The goal of a SVM is to generate a hyperplane 
which provides a class label for each data point described by a set 
of feature values. 

4. EXPERIMENT RESULTS 
We performed two series of experiments. The first experiment 
uses the sensor data collected during two summer months in the 
testbed. In the second experiment, we collected data of three 
winter months in the testbed. The biggest difference between 
these two groups of data is that some high energy consuming 
devices like room heaters were only used during the winter, which 
are not directly controlled by the residents and are therefore 
difficult to monitor and predict. The test tool we use, called Weka 
[23], provides an implementation of learning algorithms that we 
can easily apply to our own dataset. Using Weka, we assessed the 

classification accuracy of our four selected machine learning 
algorithms using 3-fold cross validation. 

 

 

Figure 6. Comparison of the accuracy for summer dataset. 

 

Figure 7. Comparison of the accuracy for winter dataset. 

 

Figures 6 and 7 plot the accuracies of the two different group 
experiments, respectively. As shown in these two figures, the 
highest accuracy is around 90% for both datasets to predict the 
two-class energy usage and the lowest accuracy is around 60% for 
the six-class case in both datasets. These results also show that the 
higher accuracy will be found when the precision was lower 
because the accuracy of all four methods will drop from about 
90% to around 60% with an increase in the number of energy 
class labels. 

From the figures we see that the Naïve Bayes Classifier performs 
worse than the other three classifiers. This is because it is based 
on the simplified assumption that the feature values are 
conditionally independent given the target value. On the contrary, 
the features that we use, are not conditionally independent. For 
example, the motion sensors associated with an activity is used to 
find the total number of times motion sensor events were triggered 
and also the kinds of motion sensors involved. 

To analyze the effectiveness of decision tree feature selection, we 
apply the ANN algorithm to both datasets with and without 
feature selection. From Figure 8, we can see the time efficiency 
has been improved greatly using feature selection. The time for 
building the training model drops from around 13 seconds to 4 
seconds after selecting the features with high information gain. 
However, as seen in Figure 9, the classification accuracy is almost 
the same or a slight better than the performance without feature 



selection. The use of feature selection can improve the time 
performance without reducing the accuracy performance in the 
original data set. 

 

   
Figure 8. Comparison of time efficiency. 

(1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Y-axis: 
second; Red: with feature selection; Blue: without feature 

selection).  Time is plotted in seconds. 

 

Figure 9. Comparison of prediction accuracy. 

(1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Red: with 
feature selection; Blue: without feature selection).  

 

Figure 10 compares the performance of the ANN applied to the 
winter and summer data sets. From the graph, we see that the 
performance for the summer data set is shade better than the 
performance for the winter dataset. This is likely due to the fact 
that the room and floor heater appliances are used during  winter , 
which consumes a large amount of energy  and are less 
predictable than the control of other electrical devices in the 
apartment. 

 

 

Figure 10 Comparison of the accuracy between two datasets. 

5. DISCUSSIONS 
Analyzing these results, we see that machine learning methods 
can be used as a tool to predict energy usage in smart home 
environments based on the human's activity and mobility. 
However, the accuracy of these methods is not as high as we 
anticipated when the energy data is divided into more than three 
classes. There are several reasons that lead to low performance of 
these algorithms. One reason is that some of the major devices are 
difficult to monitor and predict, such as the floor heater, which 
may rely on the outdoor temperature of the house. Another reason 
is that there is no obvious cycle of people’s activities. An 
additional factor we can't ignore is that there is some noise and 
perturbation motion when the sensors record data and transfer 
them into the database. Finally, the sensor data we collect is not 
enough to predict energy precisely. As a result, we intend to 
collect more kinds of sensor data to improve the prediction 
performance. 

6. CONCLUSIONS 
In this work, we introduced a method of predicting energy usage 
using an integrated system of collecting sensor data and applied 
machine learning in a smart home environment. To predict energy 
precisely, we extracted features from real sensor data in a smart 
home environment and selected the most important features based 
on information gain, then used an equal width binning method to 
discretize the value of the features. To assess the performance of 
the four machine learning methods, we performed two group 
experiments during two different periods, analyzed the results of 
the experiments and provided the explanation of those results. 

In our ongoing work, we plan to further investigate new and 
pertinent features to predict the energy more accurately. To 
improve the accuracy of energy prediction, we intend to install 
more sensitive sensors to capture more useful information in the 
smart home environment. We are also planning to apply different 
machine learning methods to different environments in which 
different residents perform similar activities. This will allow us to 
analyze whether the same pattern exists across residents and 
environments. In our next step we will analyze the energy usage 
data itself to find trends and cycles in the data viewed as a time 
series. The results of our work can be used to give residents 
feedback on energy consumption as it relates to various activities 
and be also treated as a reference to research human's life style in 
their homes.  In addition, predicted electricity use can form the 
basis for automating the activities in a manner that consumes 
fewer resources including electricity. 
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