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Abstract—As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such
as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other
classes. Existing oversampling approaches for addressing this problem typically do not consider the probability distribution of the
minority class while synthetically generating new samples. As a result, the minority class is not well represented which leads to
high misclassification error. We introduce two Gibbs sampling-based oversampling approaches, namely RACOG and wRACOG,
to synthetically generating and strategically selecting new minority class samples. The Gibbs sampler uses the joint probability
distribution of attributes of the data to generate new minority class samples in the form of Markov chain. While RACOG selects
samples from the Markov chain based on a predefined lag, wRACOG selects those samples that have the highest probability
of being misclassified by the existing learning model. We validate our approach using five UCI datasets that were carefully
modified to exhibit class imbalance and one new application domain dataset with inherent extreme class imbalance. In addition,
we compare the classification performance of the proposed methods with three other existing resampling techniques.

Index Terms—Imbalanced class distribution, Gibbs sampling, oversampling, Markov chain Monte Carlo (MCMC).
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1 INTRODUCTION

With a wide spectrum of industries drilling down into
their data stores to collect previously unused data,
data are being treated as the “new oil”. Social media,
healthcare, and e-commerce companies are refining
and analyzing data with the goal of creating new
products and/or adding value to existing ones. As
machine learning techniques mature and are used to
tackle scientific problems in the current deluge of
data, a variety of challenges arise due to the nature of
the underlying data. One well-recognized challenge
is the imbalanced class distribution problem, where
one of the target classes (the minority class) is under-
represented in comparison with the other classes (the
majority class or classes).

While many datasets do not contain a perfectly
uniform distribution among class labels, some dis-
tributions contain less than 10% minority class data
samples, which is considered imbalanced. Because the
goal of supervised learning algorithms or classifiers is
to optimize prediction accuracy for the entire data set,
most approaches ignore performance on the individ-
ual class labels. Therefore, a random classifier that labels
all data samples from an imbalanced class dataset
as members of the majority class would become the
highest performing algorithm despite incorrectly clas-
sifying all minority class samples. However, in many
problem domains such as cancerous cell identification
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[1], oil-spill detection [2], fraud detection [3], keyword
extraction [4], and text classification [5], identifying
members of the minority class is critical, sometimes
more so than achieving optimal overall accuracy for
the majority class.

The imbalance class distribution problem has vexed
researchers for over a decade and has thus received
focused attention. The common techniques that have
been investigated include: Resampling, which balances
class priors of training data by either increasing the
number of minority class data samples (oversampling)
or decreasing the number of majority class data sam-
ples (undersampling); cost-sensitive learning, which as-
signs higher misclassfication cost for minority class
samples than majority class; and, kernel-based learning
methods, which make the minority class samples
more separable from the majority class by mapping
the data to a high dimensional feature space. Among
these techniques, resampling methods remain at the
forefront due to their ease of implementation. Liu
et al. [6] articulate a number of reasons to prefer
resampling to other methods. First, because resam-
pling occurs during preprocessing, the approach can
be combined with others such as cost-sensitive learn-
ing, without changing the algorithmic anatomy [7].
Second, theoretical connections between resampling
and cost-sensitive learning indicate that resampling
can alter the misclassification costs of data points
[8]. Third, empirical evidence demonstrates nearly
identical performance between resampling and cost-
sensitive learning techniques [9], [10].

Although both under- and over-sampling tech-
niques have been improving over the years, we fo-
cus our attention on oversampling because it is well
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suited for the application that motivates our investiga-
tion. Because many class imbalance problems involve
an absolute rarity of minority class data samples
[11], undersampling of majority class examples is
not advisable. However, we use an undersampling
method, RUSBoost [12], as a proof of concept to
compare with the proposed Gibbs sampling-based
oversampling techniques: RACOG and wRACOG.

Existing oversampling approaches [13], [14] that
add synthetic data to alleviate class imbalance prob-
lem typically rely on spatial location of minority
class samples in the Euclidean feature space. These
approaches harvest local information of minority class
samples to generate new synthetic samples that are
also assumed to belong to the minority class. Al-
though this approach may be acceptable for data sets
where a crisp decision boundary exists between the
classes, spatial location-based synthetic oversampling
is not suitable for data sets that have overlap between
the minority and majority classes. Therefore, a better
idea is to exploit global information of minority class
samples, which can be done by considering the proba-
bility distribution of minority class while synthetically
generating new minority class samples.

In this paper, we exploit advances in the area
of Markov chain Monte Carlo (MCMC) methods to
introduce two Gibbs sampling-based oversampling
approaches, called RACOG and wRACOG, to gen-
erating and strategically selecting new minority class
data points. Specifically, the proposed algorithms gen-
erate new minority class data points via Gibbs sam-
pling by exploiting the joint probability distribution
and interdependencies of attributes. While RACOG
selects samples from the Markov chain generated by
the Gibbs sampler using a predefined lag, wRACOG
selects those samples that have the highest probability
of being misclassified by the existing learning model.

We validate our approach using five UCI datasets,
carefully modified to exhibit class imbalance, and
one new application domain dataset2 with inher-
ent extreme class imbalance. The proposed meth-
ods, RACOG and wRACOG are compared with
two existing oversampling techniques, SMOTE [13]
and SMOTEBoost [14] and an undersampling tech-
nique RUSBoost [12]. We evaluate the alternative ap-
proaches using the performance measures Sensitivity,
G-mean, and Area Under ROC Curve (AUC-ROC).

2 RELATED WORK

Learning from class imbalanced datasets is a niche, yet
critical area in supervised machine learning due to its
increased prevalence in real world problem applica-
tions [15], [16], [17], [18]. Due to the pervasive nature
of the imbalanced class problem, a wide spectrum
of related techniques has been proposed. One of the
most common solutions that has been investigated is

2. http://ailab.wsu.edu/casas/datasets/prompting.zip

cost sensitive learning (CSL). CSL methods counter
the underlying assumption that all errors are equal
by introducing customized costs for misclassifying
data points. By assigning a sufficiently high cost to
minority sample points, the algorithm may devote
sufficient attention to these points to learn an effective
class boundary. The effectiveness of CSL methods has
been validated theoretically [8], [10] and empirically
[9], [19], although other studies indicate that there is
no clear winner between CSL and other methods such
as resampling [20]. In addition, CSL concepts have
been coupled with existing learning methods to boost
their performance [21], [22], [23]. CSL approaches do
have drawbacks that limit their application. First, the
misclassification costs are often unknown or need
to be painstakingly determined for each application.
Second, not all learning algorithms have cost sensitive
implementation.

A second direction is to adapt the underlying clas-
sification algorithm to consider imbalanced classes,
typically using kernel-based learning methods. Since
kernel-based methods provide state-of-the-art tech-
niques for many machine learning applications, using
them to understand the imbalanced learning problem
has attracted increased attention. The kernel classifier
construction algorithm proposed by Hong et al. [24]
is based on orthogonal forward selection and a regu-
larized orthogonal weighted least squares (ROWLSs)
estimator. Wu et al. [25] propose a kernel-boundary
alignment (KBA) algorithm for adjusting the SVM
class boundary. KBA is based on the idea of modifying
the kernel matrix generated by a kernel function ac-
cording to the imbalanced data distribution. Another
interesting kernel modification technique is the k-
category proximal support vector machine (PSVM)
[26] proposed by Fung et al. This method transforms
the soft-margin maximization paradigm into a simple
system of k-linear equations for either linear or non-
linear classifiers.

Probably the most common approach, however, is
to resample, or modify the dataset in a way that
balances the class distribution. Determining the ideal
class distribution is an open problem [21] and in
most cases it is handled empirically. Naive resampling
methods include oversampling the minority class by
duplicating existing data points and undersampling
the majority class by removing chosen data points.
However, random over-sampling and under-sampling
increases the possibility of overfitting and discarding
useful information from the data, respectively.

An intelligent way of oversampling is to syntheti-
cally generate new minority class samples. Synthetic
minority class oversampling technique, or SMOTE
[13], has shown a great deal of success in various ap-
plication domains. SMOTE oversamples the minority
class by taking each minority class data point and in-
troducing synthetic examples along the line segments
joining any or all of the k-minority class nearest neigh-
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bors. In addition, adaptive synthetic sampling tech-
niques have been introduced that take a more strategic
approach to selecting the set of those minority class
samples on which synthetic oversampling should be
performed. For example, Borderline-SMOTE [27] gen-
erates synthetic samples only for those minority class
examples that are “closer” to the decision boundary
between the two classes. ADASYN [28], on the other
hand, uses the density distribution of the minority
class samples as a criterion to automatically decide
the number of synthetic samples that need to be
generated for each minority example by adaptively
changing the weights of different minority examples
to compensate for the skewed distribution. Further-
more, class imbalance problems associated with intra-
class imbalanced distribution of data in addition to
inter-class imbalance can be handled by cluster-based
oversampling (CBO) proposed by Jo et al. [29].

The information loss incurred by random under-
sampling can be overcome by methods to strategically
remove minority class samples. Liu et al. [30] pro-
posed two informed undersampling techniques that
use ensembles to learn from majority class subsets.
For data sets that have overlapping minority and ma-
jority classes [31], data cleansing is used to minimize
unwanted overlapping between classes by removing
pairs of minimally distanced nearest neighbors of op-
posite classes, popularly known as Tomek links [32],
[33], [34]. Because removing Tomek links changes the
distribution of the data, it might not be beneficial in
situations when there is a dense overlap between the
classes, because this approach might lead to overfit.
There are additionally ensemble learning approaches
[35] that combine the powers of resampling and en-
semble learning. These approaches include, but are
not restricted to, SMOTEBoost [14], RUSBoost [12],
IVotes [36] and SMOTE-Bagging [37].

Empirical studies [20] have shown that approaches
such as cost sensitive learning or kernel-based learn-
ing are not quite suitable for class imbalanced data
sets that have “rare” minority class samples. Also, any
form of under-sampling witnesses the same problem.
We are interested in applying supervised learning
techniques to a dataset that includes rare minority
class samples. While oversampling is a natural solu-
tion to this problem, existing oversampling techniques
such as SMOTE, Borderline-SMOTE and SMOTEBoost
generate new data samples that are spatially close
to existing minority class examples in the Euclidean
feature space. Ideally new data samples should be
representative of the entire minority class and not just
be drawn from local information. Therefore, in this
paper we focus on satisfying the criteria of global rep-
resentation of the minority class by generating multi-
variate samples from the joint probability distribution
of the underlying random variables or attributes.

3 APPLICATION DOMAINS

We are motivated to pursue this challenge by a
problem in pervasive computing. Specifically, we are
designing smart environments that perform health
monitoring and assistance. Studies have shown that
smart environment technologies can detect errors in
activity completion and might be utilized to extend in-
dependent living in one’s own home without compro-
mising safety [38], [39]. One type of intervention that
is valuable for individuals with cognitive impairment
is automated prompts that aid with activity initiation
and completion.

Rule-based approaches to prompting individuals
for activity initiation or completion have been de-
veloped by gerontechnology researchers [40], [41].
However, cognitive rehability theory indicates that
combining prompting technology with knowledge of
activity and cognitive context are valuable for effec-
tive health promotion [40], [42]. We postulate that
prompt timing can be automated by incorporating
contextual information provided by a smart home.

To determine the ability of a machine learning algo-
rithm to generate appropriate activity-aware prompts,
we performed a study in our smart home with 128
volunteer participants, aged 50+, who are healthy
older adults or individuals with mild cognitive im-
pairment. The smart home is a two-story apartment
equipped with sensors that monitor motion, door
open/shut status, and usage of water, burner, and
specific items throughout the apartment.

Clinically-trained psychologists watch over a web
camera as the participants perform 8 different activ-
ities. The psychology experimenter remotely issues a
prompt when they determine that the individual is
having difficulty initiating or completing an activity.
Sensor events, denoted by the event date, time, sensor
identifier, and message, are collected continuously,
along with the prompt timings. A human annotator
annotates the sensor events with corresponding ac-
tivity and a sub-step that act as the ground truth.
Table 1 shows a snippet of annotated events. On the
basis of ground truth information, the feature vector
for every activity sub-step present in the database is
generated that consists of temporal, spatial and con-
textual features. We can view automated prompting as
a supervised learning problem in which each activity
step is mapped to a “Prompt” or “No-prompt” class
label. Thus, automated prompting emulates natural
interventions provided by a caregiver.

The prompting dataset, as we would like to call it,
has 3980 examples with 17 features. Out of the 17
features, 4 are categorical and the rest are numeric.
The difficulty that is faced for the prompting problem
is that the majority of activity steps are “no-prompt”
cases and standard machine learning algorithms will
likely map all data points to this class, which defeats
the purpose of the intervention. Our goal is to design
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TABLE 1
Human Annotated Sensor Events

Date Time SensorID Status Annotation Prompt
2009-05-11 14:59:54 D010 CLOSE cook-3 prompt
2009-05-11 14:59:55 M017 ON cook-4 no-prompt
2009-05-11 15:00:02 M017 OFF none no-prompt
2009-05-11 15:00:17 M017 ON cook-8 no-prompt
2009-05-11 15:00:34 M018 ON cook-8 no-prompt
2009-05-11 15:00:35 M051 ON cook-8 no-prompt
2009-05-11 15:00:43 M016 ON cook-8 no-prompt
2009-05-11 15:00:43 M015 ON cook-9 no-prompt
2009-05-11 15:00:45 M014 ON cook-9 no-prompt

solutions to the class imbalance problem that improve
sensitivity for this prompting application.

We evaluate the applicability of our algorithm for
other datasets by evaluating them on five additional
real-world datasets from the UCI repository that ex-
hibit the class imbalance problem: abalone, car, nursery,
letter, and connect-4. Characteristics of these datasets
are summarized in Table 2. The real-valued attributes
were transformed into discrete sets by using a simple
binning technique. The multi-class datasets were con-
verted into binary class by choosing a particular class
label as minority class and the rest of the class labels
together as majority class.

4 PROPOSED APPROACHES: RACOG AND
WRACOG
Our proposed approaches to oversampling for imbal-
anced class distribution is based upon Gibbs sam-
pling. Gibbs sampling is rooted in image processing
and was introduced by Geman and Geman (1984).
The family of Markov chain Monte Carlo (MCMC)
methods, of which Gibbs sampling is a type, origi-
nated with the Metropolis algorithm [43], [44]. Before
discussing about Gibbs sampling and the way we
have used it to design RACOG and wRACOG, it is
useful to give a brief introduction to Markov chains
which forms the basis of any MCMC technique.

A first-order Markov chain is defined to be a series
of random variables z(1), ..., z(M), such that the con-
ditional independence property given in Equation 1
holds true for m ∈ {1, ..,M − 1}.

P (z(m+1)|z(1), .., z(m)) = P (z(m+1)|z(m)) (1)

This can be represented as a directed graph in the
form of a chain as shown in Figure 1. The Markov
chain can then be specified by giving the probability
distribution of the initial variable P (z(0)) and the
conditional probabilities of the subsequent variables
(transition probabilities).

Fig. 1. A Markov chain

Thus, the marginal probability of a variable of
interest can be expressed in terms of the marginal
probability of the previous variable and the transition
probability from the previous variable to the current
variable (see Equation 2).

P (z(m+1)) =
∑
z(m)

P (z(m+1)|z(m))P (z(m)) (2)

4.1 Standard Gibbs Sampler
The goal of a Gibbs sampler is to generate a Markov
chain, sometimes referred as Gibbs sequence in Gibbs
sampling context, whose samples converge to the tar-
get distribution. The approach is applicable in situa-
tions where the random variable Z has at least two di-
mensions (z =< z1, .., zk >, k > 1). At each sampling
step, the algorithm considers univariate conditional
distributions where each of the dimensions but one
is assigned a fixed value. Rather than picking the
entire collection of attribute values at once, a separate
probabilistic choice is made for each of the k dimen-
sions, where each choice depends on the values of the
other k− 1 dimensions and the previous value of the
same dimension. Such conditional distributions are
easier to model than the full joint distribution. Figure
2 shows the algorithm for the standard Gibbs sampler.
As we would find later in this section, we exploit the
univariate conditional distribution of each dimension,
represented by P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
to

probabilistically choose attribute values that form a
new synthetically generated sample.

Algorithm 1: Gibbs Sampler
1: Z(0) =< z

(0)
1 , ..., z

(0)
k >

2: for t = 1 to T
3: for i = 1 to k
4: z

(t+1)
i ∼ P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
Fig. 2. Gibbs Sampling

Implementations of Gibbs samplers are tradition-
ally dependent on two factors. The first is the number
of sample generation iterations that are needed for the
samples to reach a stationary distribution (i.e., when
the marginal distribution of Z(n) is independent of n).
In order to avoid the estimates being contaminated by
values at iterations before this point (referred to as the
burn-in), earlier samples are discarded. The second
factor is that a sample generated during one iteration
is highly dependent on the previous sample. This cor-
relation between successive values, or autocorrelation,
is avoided by defining a suitable lag, or number of
consecutive samples to discard from the Markov chain
following each accepted generated sample.

4.2 The RACOG Algorithm
The RApidy COnverging Gibbs sampler (RACOG)
uses Gibbs sampling at its core to generate new minor-
ity class samples from the distribution of the minority
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TABLE 2
Description of selected datasets

Dataset Size Dim % Min. Class Description
Prompting 3,980 17 3.7437 Description in Section 3.

Abalone 4,177 8 6.2006 Predicting age of large sea snails, abalone, from its physical measurements.
Car 1,728 6 3.9931 Evaluating car acceptability based on price, technology and comfort.

Nursery 12,960 8 2.5463 Nursery school application evaluation based on financial standing, parents’
education and social health.

Letter 20,000 16 3.7902 Classifying English alphabets using image frame features.
Connect-4 5000 42 10.0000 Predicting first player’s outcome in connect-4 game given 8-ply positions

information .

class. RACOG enhances standard Gibbs sampling by
offering an alternative mechanism for choosing the
initial values of the random variable Z (denoted
by Z(0)), that help generate samples which rapidly
converge to the target (minority class) distribution,
and by imposing dependencies among the attributes
which form the k dimensions of the random variable.

Conventionally, the initial values of the random
variable to “ignite” the Gibbs sampler are randomly
chosen value in the state space of the attributes.
This approach takes a high burn-in period and an
extremely large number of iterations for the sampler
to converge with the target distribution. On the other
hand, RACOG chooses the minority class data points
as the set of initial samples and runs the Gibbs
sampler for every minority class example. The total
number of iterations for the Gibbs sampler is re-
stricted by the desired minority:majority class distribu-
tion. Thus, RACOG produces multiple Markov chains,
each starting with a different minority class sample,
instead of one very long chain as done in conventional
Gibbs sampling. As the initial samples of RACOG are
chosen directly from the minority class samples, it
helps in achieving faster convergence of the generated
samples with the minority class distribution. This
claim is validated with the help of a convergence test
performed in Section 6.

There are arguments in the literature about the pros
and cons of single long Markov chain and multiple
shorter chain approaches. Geyer [45] argues that a
single long chain is a better approach because, if
long burn-in periods are required, or if the chains
have high autocorrelations, using a number of shorter
chains may result in chains that are not long enough
to be of any value in representing the minority class.
However, single long chain requires very high num-
ber or iterations to converge with the target distribu-
tion. Our experiments show that the argument made
by Geyer does not hold when multiple chains are
generated with the minority class data points as the
initial samples of the Gibbs sampler.

The last stumbling block in successful usage of
Gibbs sampling is the conditional distribution men-
tioned in Step 4 of the algorithm (Figure 2) which
is used to probabilistically determine attribute values
for the new sample. Simplified version of the condi-

tional distribution (see Equation 3) represents a ratio
between joint probability of all attributes values of the
random variable and a normalizing factor.

P
(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
=

P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i , z

(t)
i+1, ..., z

(t)
k

)
P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

) (3)

However, datasets which have extremely rare mi-
nority class samples and sufficiently high dimensional
random variable, the probability of joint occurrences
of other attribute values is extremely low due to
insufficient number of such minority class samples.
Because standard Gibbs Sampling algorithm does not
impose dependencies on attributes of the random
variables, sampling performed in Step 4 of the al-
gorithm disallows exploration of the entire space of
attributes and is therefore less likely to generate points
that are consistent with such minority class distri-
bution. On the other hand, considering a full joint
distribution will be prone to error because there are
insufficient minority points to accurately estimate the
probabilities that are used in Equation 3.

The RACOG algorithm explores the state space of
attributes more thoroughly by factoring the large-
dimensional joint distribution into a directed acyclic
graph (DAG) that imposes explicit dependencies be-
tween attributes. Thus, the probability of a partic-
ular data sample, x, represented as a collection of
attributes {xi : 1 ≤ i ≤M}, is be computable as:

P (x) =
∏
i

P (xi|xparents(i)) (4)

Traditionally, the DAG is constructed by learning a
Bayesian network which uses search techniques, such
as hill climbing or simulated annealing. An alterna-
tive, less computationally expensive approach, is to
employ the Chow-Liu algorithm (1968) described in
Figure 3, to construct a Bayesian tree of dependencies
by reducing the problem of constructing a maximum
likelihood tree to that of finding a maximal weighted
spanning tree in a graph. RACOG employs this ap-
proach to finding a Bayesian tree among attribute
dependencies. This allows each attribute (but the root)
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Algorithm 2: Chow-Liu Dependence Tree Construction
1: Compute the mutual information between each pair of

variables, i 6= j: IP (Xi;Xj) =
∑

x,y
P (x, y)log P (x,y)

P (x),P (y)

2: Build a complete undirected graph with variables in X
as vertices and the weight of an edge connecting Xi and
Xj by IP (Xi;Xj).

3: Build a maximum weighted spanning tree.
4: Transform the resulting undirected tree to a directed one

by choosing a root variable and setting the direction of
all edges to be outward from it.

Fig. 3. Chow-Liu Dependence Tree Construction

to have exactly one parent on which its value depends
[46]. Figure 4 shows Bayesian trees formed from the
abalone and car datasets. Attributes length and lug boot
are chosen as the roots of the Bayesian trees for abalone
and car, respectively. The number of children for the
nodes gives us an insight into the importance of those
attributes in the dataset. In other words, the greater
branching factor of a node, the greater its importance.
Equation 3 is now represented as:

P
(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
=

P
(
zroot

∏
x P (zx|zparents(x))

)
P
(
z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

) (5)

Finally, to generate a new minority class sample,
value of an attribute i represented by z

(t+1)
i is deter-

mined by randomly sampling from the distribution
of the state space (all possible values) of attribute
i represented by P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
.

Figure 5 summarizes the RACOG algorithm.
While the RACOG algorithm enhances traditional

Gibbs sampler by making it suitable for class im-
balanced data, this approach does not take into ac-
count the usefulness of the generated samples. Thus,
RACOG might add minority class samples that are
redundant and have no contribution towards con-
structing a better hypothesis. In the next section, we
introduce a wrapper enhancement to the RACOG
algorithm that addresses this issue.

4.3 The wRACOG algorithm

The enhanced RACOG algorithm, named wRACOG,
is a wrapper-based technique over RACOG utilizing

Fig. 4. Trees for (left) abalone and (right) car datasets

Algorithm 3: RACOG
1: function RACOG (minority, N , k, β, α, T )

Input: minority = minority class data points; N = size of
minority; k = minority dimensions; β = burn-in period;
α = lag; T = total number of iterations
Output: new samples = new minority class samples

2: Construct Bayesian tree BT using Chow-Liu
algorithm.

3: for n = 1 to N do
4: Z(0) = minority(n)
5: for t = 1 to T do
6: for t = 1 to k do
7: Simplify P

(
Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k

)
using BT and Equation 3.

8: z
(t+1)
i ∼ P (Si) where Si is the state space

of attribute i.
9: if t > β AND t mod (α) = 0

10: new samples = new samples + Z(t)

11: return new samples

Fig. 5. The RACOG Algorithm

Gibbs sampling as the core data sampler. However,
the purpose of introducing wRACOG is to decouple
the concept of burn-in and lag associated with sample
selection from conventional Gibbs sampling. By per-
forming iterative training on the dataset with newly
generated samples, wRACOG selects those samples
from the Markov chain that have the highest prob-
ability of being misclassified by the learning model
generated from the previous version of the dataset.

While the RACOG algorithm generates minority
class samples for a fixed (predefined) number of itera-
tions, the wRACOG algorithm keeps on fine tuning its
hypothesis at every iteration by adding new samples
until there is no further improvement with respect
to a chosen performance measure. As our goal is to
improve the performance of classifiers on the minority
class, wRACOG keeps on adding new samples until
there is no further improvement in sensitivity (true
positive rate) of the wrapper classifier (the core clas-
sifier that retrains at every iteration) of wRACOG.
This process acts as the “stopping criterion” for the
wRACOG algorithm. However, the choice of perfor-
mance measure for the stopping criterion is applica-
tion dependent.

At each iteration of wRACOG, new minority class
samples are generated by the Gibbs sampler. The
model learned by the wrapper classifier on the en-
hanced set of samples produced in the previous it-
eration is used to make predictions on the newly
generated set of samples. Those samples that are mis-
classified by the model are added to the existing set
of data samples and a new model is trained using the
wrapper classifier. At each iteration, the trained model
performs prediction on a held out validation set and
the sensitivity of the model is recorded. Generation
of new samples stops once the standard deviation
of sensitivities over the past iterations falls below
a threshold. As the wRACOG algorithm might end
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up running many iterations, the standard deviation
of sensitivities is calculated over a fixed number of
most recent iterations (slide win). We use the values
slide win=10 and threshold=0.02 for our experiments,
determined by performing an empirical study on
the datasets described in this paper. The wRACOG
algorithm is summarized in Figure 6.

Algorithm 4: wRACOG
1: function wRACOG (train, validation, wrapper, slide win,

threshold, slide win)
Input: train = training dataset enhanced at each it-
eration with new samples; validation = validation set
on which trained model is tested at every iteration to
track improvements; wrapper = classifier that is retrained
on the enhanced dataset at every iteration; slide win =
sensitivities of previous iterations; threshold = threshold
of standard deviation of sensitivities over slide win
Output: new train = final hypothesis encoded in the
oversampled training set

2: Build model by training wrapper on train
3: Run Gibbs sampler on all minority class samples

simultaneously
4: do
5: Perform prediction on newly generated samples

using model
6: Add misclassified samples to form new train
7: Train model on new train using wrapper
8: Perform prediction on validation set using trained

model and add sensitivity to slide win
9: while (σ(slide win) ≥ threshold)

10: return new train

Fig. 6. The wRACOG Algorithm

Although wRACOG is similar to existing boosting
techniques (such as AdaBoost) in the way misclassi-
fied samples are assigned higher weights to ensure
they get selected during random sampling in the
next boosting iteration, there are a number of major
distinctions. Firstly, while in traditional boosting, both
training and prediction are performed on the same
set of data samples, wRACOG trains the current
hypothesis on the data samples from the previous
iteration and performs prediction only on the newly
generated samples from the Gibbs sampler. Secondly,
there is no concept of changing weights of the samples
before resampling, as the newly generated samples
are directly added to the existing set of samples.
Thirdly, wRACOG does not use weighted voting of
multiple hypotheses learned at every iteration. In-
stead, it employs multiple iterations to fine tune a
single hypothesis. We hypothesize that by applying
this approach we can reduce the generation of redun-
dant samples to converge more closely to the true
distribution of the minority class, and also reduce
the overhead of generating multiple hypotheses as is
employed by traditional boosting techniques.

Thus, usage of Gibbs sampler as the core com-
ponent helps RACOG and wRACOG exploit global
properties of the minority class and not just local
distance between specific data points.

5 EXPERIMENTAL SETUP

The goal of the current work is to design algo-
rithms that effectively classify data points from all
classes, even with imbalanced class distribution. We
hypothesize that Gibbs sampling, particularly with
additional modeling of attribute dependencies, will
yield improved results for problems that exhibit class
imbalance. To validate our hypothesis, we compare
the results for alternative sampling algorithms using
the datasets summarized in Table 2.

5.1 Alternative Sampling Approaches

While reporting the results for the experiments, six
different methods are evaluated in order to validate
the proposed hypothesis. The first method, named
Baseline, relies upon the baseline dataset without any
sampling or preprocessing. The evaluation is per-
formed using the classifiers discussed in Section 5.2.
Rest of the methods discussed in this section pre-
process the baseline dataset.

5.1.1 SMOTE [13]

SMOTE is an oversampling approach in which the
minority class is oversampled by creating “synthetic”
examples based on spatial location of the data points
in the Euclidean feature space. Oversampling is per-
formed by considering each minority class data point
and introducing synthetic examples along the line seg-
ments joining any or all of the k-minority class near-
est neighbors. The k-nearest neighbors are randomly
chosen depending upon the amount of oversampling
required. Synthetic data points are generated in the
following way: First, the difference between the data
point under consideration and its nearest neighbor is
computed. This difference is multiplied by a random
number between 0 and 1, and it is added to the data
point under consideration. This results in the selection
of a random point in the Euclidean space, along the
line segment between two specific data points. Con-
sequently, by adding diversity to the minority class,
this approach forces the decision boundary between
the two regions to be crisper. However, as SMOTE
does not rely on the probability distribution of the
minority class as a whole, there is no guarantee that
the generated samples belong to the minority class,
especially when the samples from the majority and
minority classes overlap [31].

In our experiments, we have used the publicly
available implementation of SMOTE available with
the Weka API. Although there is no ideal class distri-
bution for effective classification of examples from all
classes, we use SMOTE to oversample the minority
class and attain a 50:50 class distribution, which is
considered near optimal [47].



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING - DRAFT 8

5.1.2 SMOTEBoost [14]

By using a combination of SMOTE and a stan-
dard boosting procedure, SMOTEBoost tries to better
model the minority class by providing the learner
not only with the minority class examples that were
misclassified in the previous boosting iteration but
also with a broader representation of those instances
achieved by SMOTE. The inherent skewness in the
updated distribution towards majority class points at
every iteration of the boosting procedure is rectified
by introducing SMOTE to increase the number of
minority class points according to the distribution
learned from the previous iteration. Thus, introduc-
tion of SMOTE increases the number of minority class
samples for the learner and focuses on these cases in
the distribution at each boosting round. In addition to
maximizing the margin for the skewed class dataset,
this procedure also increases the diversity among the
classifiers in the ensemble because at each iteration a
different set of synthetic samples is produced.

Due to unavailability of SMOTEBoost implemen-
tation, we implemented it in MATLAB and is avail-
able on MATLAB CENTRAL File Exchange3. This
implementation considers 10 boosting iterations as the
experiments performed by Seiffert et al. [12] suggest
that there is no significant improvement between 10
and 50 iterations of AdaBoost. However, unlike orig-
inal SMOTEBoost, the classifiers used for evaluating
sampling techniques, as mentioned in Section 5.2, are
used a weak learners.

Although iterative learning of the weak learner by
the boosting procedure attempts to form a hypothesis
which better classifies minority class data points, the
quality of the generated samples is still dependent
on the spatial location of minority class samples in
the Euclidean feature space, as is done by SMOTE.
Moreover, SMOTEBoost executes SMOTE 10 times
(for 10 boosting iterations), generating 10×(#majority
class samples −#minority class samples) samples and
thus making it computationally expensive.

5.1.3 RUSBoost [12]

RUSBoost is very similar to SMOTEBoost, but claims
to achieve better classification performance on the
minority class data points by random under-sampling
(RUS) of majority class examples. Although this
method results in a simpler algorithm with a faster
model training time, it is not able to achieve favorable
performance (explained later in Section 6) as claimed
by Seiffert et al., especially when the datasets have an
absolute rarity of minority class examples. RUSBoost
is used as an example of an under-sampling technique
for comparing the performance of under-sampling
approaches with the oversampling techniques, which
is the primary focus of this paper.

3. http://www.mathworks.com/matlabcentral/fileexchange/37311

We also implemented RUSBoost in MATLAB and
made it available at the MATLAB CENTRAL File
Exchange website4. The number of boosting iterations
and types of weak learners used for the boosting
procedure are same as that of the SMOTEBoost imple-
mentation. However, as most of the data sets under
consideration have an absolute rarity of minority
class examples, the class imbalance ratio has been
set to 35:65 (minority:majority). The choice of class
distribution is based on the empirical investigations
performed by Khoshgoftaar et al. [48] which verifies
that a 35:65 class distribution would result in better
classification performance than a 50:50 class distribu-
tion when examples from one class are extremely rare
as compared to others.

The proposed approaches, RACOG and wRACOG
are compared with the aforementioned alternative
sampling techniques. RACOG oversamples the minor-
ity class to achieve a 50:50 class distribution. There-
fore, the total number of iterations is fixed and is
determined on the basis of (#majority class samples
−#minority class samples), burn-in and lag. A burn-in
period of 100 and a lag of 20 iterations is chosen as
the convention in the literature [49] to avoid autocor-
relation among the samples generated by the Gibbs
sampler. As mentioned, wRACOG adds samples to
the minority class until the standard deviation of
sensitivity over the 10 recent iterations fall below
an empirically determined threshold. The classifiers
presented in Section 5.2 are used as wrapper classifiers
and are trained on an enhanced dataset at every
iteration of wRACOG.

5.2 Classifiers for Performance Evaluation

We choose four most common classifiers in machine
learning to evaluate the performance of the proposed
methods and other sampling approaches: decision
tree, SVM, k-nearest neighbor and logistic regression.
We performed parameter tuning of the chosen classi-
fiers on the baseline data before pre-processing. The
parameter values of the classifiers that performed
best on the baseline datasets are used in conducting
experiments with the existing and proposed sampling
approaches. Table 3 lists parameter values of the
corresponding classifiers. The Weka implementations
of these classifiers found with the Weka Java API are
integrated into our implementations in MATLAB.

All the experiments are performed using 5-fold
cross validation where prediction is performed on
held-out data that is not resampled.

5.3 Performance Measures

Traditionally, the most frequently-used performance
measure is Accuracy. Referring to the minority class

4. http://www.mathworks.com/matlabcentral/fileexchange/37315



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING - DRAFT 9

TABLE 3
Classifiers and parameter values

Classifier Parameter Values
C4.5 Decision Tree Confidence factor = 2,

Minimum # instances per leaf = 2
SVM Kernel = RBF, RBF kernel γ = 0.01

k-Nearest Neighbor k =5, Distance measure = Euclidean
Logistic Regression Log likelihood ridge value = 1× 10(−8)

as positive and the majority class as negative, Accuracy
is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
;

ErrorRate = 1−Accuracy
(6)

Accuracy and Error Rate (1 - Accuracy) give a high-
level idea about the classifier’s performance. How-
ever, in a class imbalance scenario this can be deceiv-
ing. Accuracy and Error Rate are ineffective for eval-
uating classifier performance in a class imbalanced
dataset as they consider different types of classifica-
tion errors as equally important. For example, in an
imbalanced dataset with 5% minority class, a random
prediction of all the test instances being negative
will yield an accuracy of 95%. However, in this case
the classifier could not correctly predict any of the
minority class points. Therefore, in order to provide
comprehensive assessment of the imbalanced learning
problem, we need to either consider metrics that can
report the performance of classifier on two classes
separately or not let the effect of class imbalance get
reflected in the metric. As a result, we also report
performance in terms of the following measures:

Sensitivity: The portion of the positive class exam-
ples that were predicted correctly.

Sensitivity =
TP

TP + FN
(7)

Specificity: The portion of the negative class exam-
ples that were predicted correctly.

Specificity =
TN

TN + FP
(8)

G-mean: The degree of inductive bias in terms of
a ratio of positive accuracy (Sensitivity) and negative
accuracy (Specificity).

G−mean =

√
TP

TP + FN
× TN

TN + FP

=
√
Sensitivity × Specificity

(9)

ROC Curves: A visualization of the benefits (TP
Rate) and costs (FP Rate) of the classifier.

TPRate =
TP

TP + FN
;FPRate =

FP

FP + TN
(10)

The area under ROC curve (AUC-ROC) [50] gives
a single measure of a classifier’s performance for
evaluating which model is better on average.

6 RESULTS AND DISCUSSION

The primary limitation of classifiers that model imbal-
anced class datasets is in achieving desirable predic-
tion accuracy for minority class instances. That is, the
sensitivity is typically low assuming that the minority
class is represented as the positive class. The proposed
approaches place emphasis on boosting the sensitivity
of the classifiers while maintaining a strong predic-
tion performance for both of the classes, which is
measured by G-mean. However, we understand that
the choice of performance measure that needs to be
boosted when dealing with class imbalanced dataset
is tightly coupled with the application domain. More-
over, finding a trade-off between improving classifier
performance on the minority class in isolation and
on the overall dataset should ideally be left at the
discretion of the domain expert.

We compare the sensitivity of this C4.5 decision tree
on all six approaches in Figure 7. From the figure
it is quite evident that both RACOG and wRACOG
perform better than the other methods. Also, there is
not too much performance variability for RACOG and
wRACOG over the five cross validation. RUSBoost
fails by performing nowhere close to the oversam-
pling techniques. The poor performance of RUSBoost
can be attributed to the rarity of minority class sam-
ples in the datasets under consideration. When the mi-
nority class samples are already rare, random under-
sampling of majority class to achieve a 35:65 class
distribution (as done by RUSBoost) at each iteration
of RUSBoost, makes the majority class samples rare
as well. Thus, the weak leaner of RUSBoost does not
learn anything on the majority class which increases
the error rate of the hypothesis at every iteration.
Both SMOTE and SMOTEBoost are good contenders,
although SMOTEBoost outperforms SMOTE in most
of the cases. Although wRACOG performs better
than RACOG on four datasets, they perform equally
well for the car and nursery datasets. We verify the
statistical significance of these improvements using
a Student’s t test. RACOG and wRACOG do exhibit
significant (p < 0.05) performance improvement over
SMOTEBoost. The statistical significance of the perfor-

Fig. 7. Sensitivity for C4.5 Decision Tree
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Fig. 8. G-mean for C4.5 Decision Tree

mance improvements of RACOG and wRACOG over
SMOTEBoost for alternative classifiers are reported in
bold in Tables 5, 6 and 7.

Because the sampling techniques boost the minority
class, there is a tendency for the false positive rate to
increase. However, the increase in false positive rate
is not very significant and therefore it does not affect
the G-mean scores. Figure 8 reports the G-mean scores
of C4.5 decision tree on all the methods when tested
with the six datasets. Clearly, RACOG and wRACOG
result in a superior performance over SMOTE and
SMOTEBoost. However, SMOTEBoost is a very strong
contender.

In Figure 9, we plot the ROC curves produced by
the different approaches on each of the 6 datasets
when evaluated with a C4.5 decision tree. For the
prompting, abalone and car datasets, Baseline and RUS-
Boost do not perform any better than random pre-
diction. The performance of RACOG and wRACOG
are clearly better than SMOTE and SMOTEBoost for
the prompting dataset. However, there is no clear
winner among them for the abalone, car and nursery
datasets. The AUC-ROCs are reported in Table 4. For
the letter and connect-4 datasets, the AUC-ROC for
SMOTEBoost is higher than RACOG and wRACOG.
However, no statistically significant improvement of
RACOG and wRACOG was found over SMOTEBoost
based on AUC-ROC. Also, as there is no clear winner
between RACOG and wRACOG on any of the per-
formance measures we do not conduct any statistical
significance test between them.

Convergence Diagnostic Test In the current work
we explore the strengths of Markov chain Monte
Carlo techniques, specifically Gibbs sampling, to gen-
erate new minority class samples. A major issue for
the successful implementation of any MCMC tech-
nique is to determine the number of iterations re-
quired for the generated samples to converge to the
target distribution.

Researchers in econometrics [51] use formal meth-
ods such as the Raftery-Lewis test [49] to make this
determination. Given outputs from a Gibbs sampler,
the Raftery-Lewis test provides the answer to: how
long to monitor the chain of samples? Here, one specifies

a particular quantile q of the distribution of interest
(typically 2.5% and 97.5%, to give a 95% confidence
interval), an accuracy σ of the quantile, and a power
1 − β for achieving this accuracy on the specified
quantile. These parameters are used to determine the
burn-in (M ), the total number of iterations required
to achieve the desired accuracy for the posterior (N ),
the appropriate lag (k), and the number of iterations
(Nmin) that would be needed if the samples repre-
sented an independent and identically distributed (iid)5

chain, which is not true in our case because of the
autocorrelation structure present in the Markov chain
of generated samples.

The diagnostic was designed to test the number of
iterations and burn-in needed, by first running and
testing a shorter pilot chain. In practice, it is also
used to test any normal Markov chain generated by
a Gibbs sampler to see if it satisfies the results that
the diagnostic suggests. These output values can be
combined to calculate i-stat defined as follows:

i− stat = M +N

Nmin
(11)

i-stat measures the increase in the number of iter-
ations due to dependence in the sequence (Markov
chain). Raftery and Lewis indicate that i-stat is indica-
tive of a convergence of the sampler if the value does
not exceed 5.

Fig. 10. i-stat values for RACOG and wRACOG

From Figure 10 it is evident that convergence is al-
most achieved by both RACOG and wRACOG for the
prompting and letter datasets. However, the wRACOG
i-stat value is greater than the RACOG value for the
remainder of the datasets. Although this indicates that
wRACOG could not converge to the target minor-
ity class distribution for the abalone, nursery and car
datasets, we have seen that the wRACOG sensitivity
and G-mean are better or at par with RACOG. There-
fore, one explanation is that convergence here (not
necessarily probabilistic) is subjective as it is tightly
coupled with the application.

We further analyze the convergence of RACOG and
wRACOG in terms of the number of iterations the

5. An iid sequence is a very special kind of Markov chain;
whereas a Markov chain’s future is allowed (but not required)
to depend on the present state, an iid sequence’s future does not
depend on the present state at all.
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Fig. 9. ROC curves produced by C4.5 Decision Tree

TABLE 4
AUC-ROC for C4.5 Decision Tree

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.5000± 0.0000 0.8681± 0.0359 0.8546± 0.0334 0.5000± 0.0000 0.8851± 0.0207 0.8717± 0.0404

abalone 0.5000± 0.0000 0.8693± 0.0272 0.8718± 0.0262 0.5000± 0.0000 0.8646± 0.0233 0.8727± 0.0208
car 0.5000± 0.0000 0.9595± 0.0320 0.9957± 0.0025 0.5000± 0.0000 0.9879± 0.0027 0.9904± 0.0067

nursery 0.9849± 0.0077 0.9515± 0.0219 0.9999± 0.0001 0.7999± 0.0456 0.9968± 0.0005 0.9967± 0.0005
letter 0.8745± 0.0056 0.9340± 0.0153 0.9865± 0.0080 0.8226± 0.0286 0.9659± 0.0102 0.9707± 0.0026

connect-4 0.6215± 0.0310 0.6907± 0.0335 0.8317± 0.0140 0.5552± 0.0092 0.7333± 0.0181 0.7115± 0.0282

Fig. 11. Comparison of total number of iterations
required by different methods to achieve given i-stat

Gibbs sampler undergoes to achieve the i-stat value
reported in Figure 10. From Figure 11 we notice that
wRACOG generates a much fewer (except for connect-
4 dataset) number of iterations (∼ 63%) than RACOG.
This explains the poor performance of wRACOG in
terms of probabilistic convergence on the Raftery-
Lewis test. However, the sensitivity and G-mean score
are not affected by the reduction in the number of
iterations.

The number of samples added to the baseline
datasets by the different oversampling algorithms for
achieving the reported performance is also an impor-
tant parameter to analyze. Ideally, we would want to
obtain a high performance by adding as less number

Fig. 12. Comparison of log(number of instances
added) by different methods

of samples as possible. Figure 12 illustrates the num-
ber of samples added by the different approaches. As
the number of samples added by SMOTEBoost is far
higher than other methods, we present log10 values
of the number of added samples so that the comparison
could be better represented in the plot. SMOTE and
RACOG try to achieve a 50:50 class distribution and
thus add samples accordingly. SMOTEBoost requires
ten boosting iterations to produce ten hypotheses on
which weighted voting is performed while prediction.
The hypothesis learned at each iteration of SMOTE-
Boost has the form: ht : X × Y −→ [0, 1], and
therefore stores the instances generated by SMOTE at
every iteration. Hence, SMOTEBoost adds ten times
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TABLE 5
Results for SVM

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0000 ± 0.0000 0.6667 ± 0.0667 0.2600 ± 0.0641 0.0000 ± 0.0000 0.5600 ± 0.1011 0.5400 ± 0.0723

abalone 0.0000 ± 0.0000 0.9462 ± 0.0251 0.8462 ± 0.0769 0.0000 ± 0.0000 0.9385 ± 0.0161 0.9846 ± 0.0161

car 0.0000 ± 0.0000 1.0000 ± 0.0000 0.9000 ± 0.1195 0.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

nursery 0.0000 ± 0.0000 0.9939 ± 0.0136 0.9848 ± 0.0186 0.7091 ± 0.0529 1.0000 ± 0.0000 1.0000 ± 0.0000

letter 0.4645 ± 0.0430 0.9026 ± 0.0409 0.9092 ± 0.0388 0.6487 ± 0.0396 0.9289 ± 0.0220 0.9364 ± 0.0166

connect-4 0.0000 ± 0.0000 0.6233 ± 0.0473 0.5680 ± 0.0383 0.0000 ± 0.0000 0.7880 ± 0.0390 0.9867 ± 0.0153

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0000 ± 0.0000 0.7653 ± 0.0419 0.5008 ± 0.0587 0.0000 ± 0.0000 0.7184 ± 0.0612 0.7053 ± 0.0430

abalone 0.0000 ± 0.0000 0.8049 ± 0.0079 0.8087 ± 0.0324 0.0000 ± 0.0000 0.8020 ± 0.0096 0.7850 ± 0.0140

car 0.0000 ± 0.0000 0.9629 ± 0.0028 0.9278 ± 0.0633 0.0000 ± 0.0000 0.9632 ± 0.0076 0.9660 ± 0.0075

nursery 0.0000 ± 0.0000 0.9742 ± 0.0065 0.9817 ± 0.0095 0.8403 ± 0.0320 0.9660 ± 0.0020 0.9760 ± 0.0042

letter 0.6804 ± 0.0316 0.9341 ± 0.0223 0.9484 ± 0.0195 0.8034 ± 0.0244 0.9351 ± 0.0115 0.9395 ± 0.0046

connect-4 0.0000 ± 0.0000 0.7306 ± 0.0282 0.7135 ± 0.0221 0.0000 ± 0.0000 0.8007 ± 0.0210 0.8269 ± 0.0351

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.5000 ± 0.0000 0.7734 ± 0.0384 0.8620 ± 0.0170 0.5000 ± 0.0000 0.7437 ± 0.0490 0.7332 ± 0.0316

abalone 0.5000 ± 0.0000 0.8156 ± 0.0100 0.8792 ± 0.0339 0.5000 ± 0.0000 0.8121 ± 0.0074 0.8054 ± 0.0102

car 0.5000 ± 0.0000 0.9636 ± 0.0027 0.9772 ± 0.0132 0.5000 ± 0.0000 0.9639 ± 0.0073 0.9666 ± 0.0073

nursery 0.5000 ± 0.0000 0.9744 ± 0.0065 0.9958 ± 0.0006 0.8530 ± 0.0264 0.9665 ± 0.0020 0.9763 ± 0.0041

letter 0.7315 ± 0.0213 0.9348 ± 0.0214 0.9915 ± 0.0050 0.8222 ± 0.0194 0.9351 ± 0.0114 0.9396 ± 0.0045

connect-4 0.5000 ± 0.0000 0.7402 ± 0.0238 0.8503 ± 0.0081 0.5000 ± 0.0000 0.8010 ± 0.0204 0.8210 ± 0.0203

TABLE 6
Results for k-Nearest Neighbor

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0533 ± 0.0298 0.6333 ± 0.0471 0.4667 ± 0.2055 0.0600 ± 0.0435 0.7533 ± 0.0767 0.6600 ± 0.0760

abalone 0.0000 ± 0.0000 0.8885 ± 0.0498 0.8308 ± 0.0896 0.0000 ± 0.0000 0.8846 ± 0.0360 0.9423 ± 0.0136

car 0.0429 ± 0.0639 0.7571 ± 0.1644 0.9286 ± 0.0505 0.0286 ± 0.0391 1.0000 ± 0.0000 1.0000 ± 0.0000

nursery 0.3121 ± 0.0409 0.9364 ± 0.0561 0.9727 ± 0.0166 0.3303 ± 0.0046 1.0000 ± 0.0000 1.0000 ± 0.0000

letter 0.7566 ± 0.0372 0.9118 ± 0.0374 0.8987 ± 0.0253 0.7250 ± 0.0225 0.9211 ± 0.0186 0.9189 ± 0.0166

connect-4 0.0360 ± 0.0134 0.7133 ± 0.0586 0.4940 ± 0.0654 0.0380 ± 0.0110 0.6100 ± 0.0436 0.8833 ± 0.0651

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.2243 ± 0.0607 0.7547 ± 0.0268 0.6449 ± 0.1423 0.2144 ± 0.1318 0.8272 ± 0.0418 0.7798 ± 0.0405

abalone 0.0000 ± 0.0000 0.8301 ± 0.0198 0.8177 ± 0.0367 0.0000 ± 0.0000 0.8311 ± 0.0192 0.7841 ± 0.0127

car 0.1290 ± 0.1810 0.8093 ± 0.0729 0.9193 ± 0.0244 0.1069 ± 0.1464 0.8916 ± 0.0187 0.9471 ± 0.0071

nursery 0.5578 ± 0.0358 0.9262 ± 0.0206 0.9670 ± 0.0105 0.5741 ± 0.0309 0.9171 ± 0.0040 0.9832 ± 0.0025

letter 0.8683 ± 0.0213 0.9361 ± 0.0198 0.9366 ± 0.0122 0.8503 ± 0.0130 0.9350 ± 0.0102 0.9431 ± 0.0099

connect-4 0.1869 ± 0.0358 0.7097 ± 0.0295 0.6596 ± 0.0445 0.1932 ± 0.0276 0.7153 ± 0.0250 0.6911 ± 0.0184

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.8707 ± 0.0225 0.8670 ± 0.0228 0.8168 ± 0.0197 0.5290 ± 0.0214 0.8854 ± 0.0307 0.8905 ± 0.0168

abalone 0.8819 ± 0.0179 0.8760 ± 0.0338 0.8783 ± 0.0243 0.5000 ± 0.0000 0.8812 ± 0.0210 0.8725 ± 0.0089

car 0.9930 ± 0.0035 0.9543 ± 0.0129 0.9724 ± 0.0112 0.5143 ± 0.0196 0.9932 ± 0.0035 0.9941 ± 0.0043

nursery 0.9999 ± 0.0003 0.9875 ± 0.0073 0.9949 ± 0.0016 0.6652 ± 0.0173 0.9994 ± 0.0002 0.9990 ± 0.0004

letter 0.9872 ± 0.0051 0.9818 ± 0.0074 0.9808 ± 0.0077 0.8613 ± 0.0110 0.9860 ± 0.0062 0.9887 ± 0.0018

connect-4 0.7744 ± 0.0426 0.7732 ± 0.0185 0.7844 ± 0.0235 0.5183 ± 0.0054 0.8262 ± 0.0241 0.7824 ± 0.0349

TABLE 7
Results for Logistic Regression

Sensitivity

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.0867 ± 0.0447 0.5667 ± 0.0850 0.2933 ± 0.1657 0.1533 ± 0.0380 0.4667 ± 0.1179 0.4867 ± 0.1043

abalone 0.0000 ± 0.0000 0.9154 ± 0.0258 0.8962 ± 0.0322 0.0000 ± 0.0000 0.8923 ± 0.0421 0.9308 ± 0.0586

car 0.3429 ± 0.1174 0.9571 ± 0.0639 0.8714 ± 0.0782 0.3286 ± 0.1481 1.0000 ± 0.0 1.0000 ± 0.0000

nursery 0.7394 ± 0.0127 0.9424 ± 0.0628 0.9515 ± 0.0392 0.7576 ± 0.0557 1.0000 ± 0.0000 1.0000 ± 0.000

letter 0.6171 ± 0.0482 0.9000 ± 0.0471 0.9197 ± 0.0086 0.6566 ± 0.0205 0.9184 ± 0.0231 0.9518 ± 0.0249

connect-4 0.2920 ± 0.0785 0.6300 ± 0.0361 0.5600 ± 0.0543 0.3040 ± 0.0439 0.8120 ± 0.0327 1.0000 ± 0.0000

G-mean

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.2845 ± 0.0782 0.7186 ± 0.0503 0.5141 ± 0.1537 0.3861 ± 0.0497 0.6596 ± 0.0784 0.6722 ± 0.0778

abalone 0.0000 ± 0.0000 0.8441 ± 0.0184 0.8264 ± 0.0245 0.0000 ± 0.0000 0.8290 ± 0.0197 0.7971 ± 0.0496

car 0.5746 ± 0.0979 0.9543 ± 0.0322 0.9092 ± 0.0410 0.5556 ± 0.1362 0.9747 ± 0.0050 0.9716 ± 0.0040

nursery 0.8573 ± 0.0066 0.9600 ± 0.0309 0.9655 ± 0.0189 0.8679 ± 0.0319 0.9860 ± 0.0017 0.9887 ± 0.0013

letter 0.7826 ± 0.0305 0.9243 ± 0.0252 0.9329 ± 0.0076 0.8082 ± 0.0122 0.9270 ± 0.0114 0.9286 ± 0.0100

connect-4 0.5293 ± 0.0778 0.7383 ± 0.0234 0.7051 ± 0.0317 0.5438 ± 0.0409 0.8046 ± 0.0164 0.8142 ± 0.0451

AUC-ROC

Dataset Baseline SMOTE SMOTEBoost RUSBoost RACOG wRACOG
prompting 0.8714 ± 0.0173 0.8643 ± 0.0371 0.8404 ± 0.0246 0.5691 ± 0.0192 0.8269 ± 0.0482 0.8222 ± 0.0124

abalone 0.8914 ± 0.0082 0.8900 ± 0.0167 0.8756 ± 0.0191 0.4999 ± 0.2852 0.8914 ± 0.0149 0.8832 ± 0.0304

car 0.9778 ± 0.0031 0.9758 ± 0.0039 0.9652 ± 0.0054 0.6562 ± 0.0754 0.9731 ± 0.0080 0.9741 ± 0.0065

nursery 0.9954 ± 0.0007 0.9948 ± 0.0010 0.9923 ± 0.0009 0.8764 ± 0.0279 0.9956 ± 0.0007 0.9948 ± 0.0010

letter 0.9817 ± 0.0025 0.9782 ± 0.0055 0.9756 ± 0.0066 0.8258 ± 0.0096 0.9810 ± 0.0048 0.9787 ± 0.0065

connect-4 0.8769 ± 0.0086 0.8538 ± 0.0088 0.8320 ± 0.0157 0.6403 ± 0.0238 0.8742 ± 0.0276 0.8840 ± 0.0066
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the number of samples added by SMOTE. On the
other hand, wRACOG requires a fraction (∼ 56%)
of the number of samples generated by SMOTE and
RACOG, and (∼ 5.6%) of the number of samples
generated by SMOTEBoost, to obtain superior per-
formance. We attribute this behavior to wRACOG’s
sample selection methodology which ensures the di-
versity in the samples that are added.

7 CONCLUSION

In this paper, we propose two Gibbs sampling-based
algorithms for generating new minority class sam-
ples for class imbalanced datasets. While conventional
Gibbs sampling uses joint probability distribution of
data attributes to generate samples, we do not find
this approach to be suitable for class imbalanced
datasets which (mostly) contains rare minority class
samples. As a solution, we use a Bayesian tree-
based approach to impose dependencies among at-
tributes. Both the proposed approaches, RACOG and
wRACOG, use Gibbs sampling at their core. However,
they differ in the sample selection strategy. RACOG
runs the Gibbs sampler for a predetermined number
of iterations and selects samples from the Markov
chain generated by the Gibbs sampler using prede-
fined burn-in and lag. On the other hand, wRACOG
selects samples that have the highest probability of
being misclassified by the existing learning model. It
keeps on adding samples unless there is no further
improvement in sensitivity over a predefined number
of most recent iterations.

Experiments with RACOG and wRACOG on a
wide variety of datasets and classifiers indicate that
the algorithm is able to attain higher sensitivity than
other methods, while maintaining higher G-mean.
This supports our hypotheses that generating new
samples by considering the global distribution of mi-
nority class points is a good approach for dealing with
class imbalance. The motivation to focus mainly on
improving sensitivity comes from the our application
domain in pervasive computing. However, we ensure
that the performance of the classifiers on both the
classes is not hampered.

In the future, we want to experiment with alterna-
tive methods to the Bayesian tree to see if attribute
dependencies could be captured more accurately. As
the current Bayesian tree approach is computationally
lightweight, we would ensure that this property is
preserved while experimenting with alternative ap-
proaches. Also, we would propose RACOGBoost by
combining the advantages of boosting with that of
RACOG.
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